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1 Introduction38

In its basic form, number theory studies properties of the integers Z and its fraction field,39

the rational numbers Q. Both for the sake of generalization, as well as for providing powerful40

techniques to answer questions about the original objects Z and Q, it is worthwhile to study41

finite extensions of Q, called number fields, as well as their rings of integers (Section 2),42
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whose relations mirror the way Q contains Z as a subring. In this paper, we describe our43

project aiming at formalizing these notions and some of their important properties. Our goal,44

however, is not to get to the definitions and properties as quickly as possible, but rather to45

lay the foundations for future work, as part of a natural and more general theory as we shall46

explain below.47

In particular, our project resulted in formalized definitions and elementary properties of48

number fields and their rings of integers (Section 3.3), Dedekind domains (Section 4), and49

the ideal class group and class number (Section 7). Apart form the very basics concerning50

number fields, these concepts were not formalized before as far as we are aware of. We note51

that our formal definition of the class number is an essential requirement for the use of52

theorem provers in modern number theory research. The main proofs that we formalized53

show that two definitions of Dedekind domains are equivalent (Section 4.3), that the ring54

of integers is a Dedekind domain (Section 6) and that the class group of a number field is55

finite (Section 7). In fact, most of our results for number fields are also obtained in the more56

general setting of global fields.57

Our work is developed as part of the mathematical library mathlib [20] for the Lean 358

theorem prover [6]. The formal system of Lean is a dependent type theory based on the59

calculus of inductive constructions, with a proof-irrelevant impredicative universe Prop at the60

bottom of a noncumulative hierarchy of universes Prop : Type : Type 1 : Type 2 : ... ;61

“an arbitrary Type u” is abbreviated as Type*. Other important characteristics of Lean as62

used in mathlib are the use of quotient types, ubiquitous classical reasoning and the use of63

typeclasses to define the hierarchy of algebraic structures.64

Organizationally, mathlib is characterized by a distributed and decentralized community65

of contributors, a willingness to refactor its basic definitions, and a preference for small yet66

complete contributions over larger projects added all at once. In this project, as part of67

the development of mathlib, we follow this philosophy by contributing pieces of our work68

as they are finished. We, in turn, use results contributed by others after the start of the69

project. At several points, we had just merged a formalization into mathlib that another70

contributor needed, immediately before they contributed a result that we needed. Due71

to the decentralized organization and fluid nature of contributions to mathlib, its contents72

are built up of many different contributions from over 100 different authors. Attributing73

each formalization to a single set of main authors would not do justice to all others whose74

additions and tweaks are essential to its current use. Therefore, we will make clear whether75

a contribution is part of our project or not, but we will not stress whom we consider to be76

the main authors.77

The source files of the formalization are currently in the process of being merged into78

mathlib. The up-to-date development branch is publically available.1 We also maintain a79

repository2 containing the source code referred to in this paper.80

2 Mathematical background81

Let us now introduce some of the main objects we study, described informally. We assume82

some familiarity with basic ring and field theory.83

A number field K is a finite extension of the field Q, and as such has the structure84

of a finite dimensional vector space over Q; its dimension is called the degree of K. The85

1 https://github.com/leanprover-community/mathlib/tree/dedekind-domain-dev
2 https://github.com/lean-forward/class-number

https://github.com/leanprover-community/mathlib/tree/dedekind-domain-dev
https://github.com/lean-forward/class-number
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easiest example is Q itself, and the two-dimensional cases are given by the quadratic number86

fields Q(
√

d) = {a + b
√

d : a, b ∈ Q} where d ∈ Z is not a square. For an interesting87

cubic example, let α be the unique real number satisfying α3 + α2 − 2α + 8 = 0. It gives88

rise to the number field Q(α) = {a + bα + cα2 : a, b, c ∈ Q}. In general, taking any89

root α of an irreducible polynomial of degree n over Q yields a number field of degree n:90

Q(α) = {c0 + c1α + . . . + cn−1αn−1 : c0, c1, . . . , cn−1 ∈ Q}, and, up to isomorphism, these91

are all the number fields of degree n.92

The ring of integers OK of a number field K is defined as the integral closure of Z in K,93

which amounts to94

OK :=
{

x ∈ K : f(x) = 0 for some monic polynomial f with integer coefficients
}

,95

where we recall that a polynomial is called monic if its leading coefficient equals 1. While96

it might not be immediately obvious that OK is a ring, this follows from general algebraic97

properties of integral closures. Some examples of OK are the following. Taking K = Q,98

we get OK = Z back. For K = Q(i) = Q(
√

−1) we get that OK is the ring of Gaussian99

integers Z[i] = {a + bi : a, b ∈ Z}. But for K = Q(
√

5) we do not simply get Z[
√

5] =100

{a + b
√

5 : a, b ∈ Z} as OK , since the golden ratio φ := (1 +
√

5)/2 ̸∈ Z[
√

5] satisfies101

the monic polynomial equation φ2 − φ − 1 = 0; hence by definition, φ ∈ OK . It turns102

out that OK = Z[φ] = {a + bφ : a, b ∈ Z}. Finally, if K = Q(α) with α as before, then103

OK = {a + bα + c(α + α2)/2 : a, b, c ∈ Z}, illustrating that explicitly writing down OK can104

quickly become complicated. Further well-known rings of integers are the Eisenstein integers105

Z[(1 +
√

−3)/2] and the ring Z[
√

2].106

Thinking of OK as a generalization of Z, it is natural to ask which of its properties still107

hold in OK and, when this fails, if a reasonable weakening does.108

An important property of Z is that it is a principal ideal domain (PID), meaning that109

every ideal is generated by one element. This implies that every nonzero nonunit element110

can be written as a finite product of prime elements, which is unique up to reordering and111

multiplying by ±1: a ring where this holds is called a unique factorization domain, or UFD.112

For example, 6 can be factored in primes in 4 equivalent ways, namely 6 = 2 · 3 = 3 · 2 =113

(−2) · (−3) = (−3) · (−2). In fact, the previously mentioned examples of rings of integers are114

UFDs, but this is certainly not true for all rings of integers. For example, unique factorization115

does not hold in Z[
√

−5]: it is easy to prove that 6 = 2 · 3 and 6 = (1 +
√

−5)(1 −
√

−5)116

provide two essentially different ways to factor 6 into prime elements of Z[
√

−5].117

As it turns out, there is a way to remedy this. Namely, by considering factorization of118

ideals instead of elements: given a number field K, with ring of integers OK , a beautiful119

and classical result by Dedekind shows that every nonzero ideal of OK can be factored as a120

product of prime ideals in a unique way, up to reordering.121

Although unique factorization in terms of ideals is of great importance, it is still interesting,122

and sometimes necessary, to also consider factorization properties in terms of elements. We123

mentioned that unique factorization in Z follows from the fact that every ideal is generated124

by a single element. We can extend the monoid of ideals of Z to a group of fractional ideals.125

These are additive subgroups of Q of the form 1
d I with I an ideal of Z and d a nonzero126

integer. When the distinction is important, we refer to an ideal I ⊆ Z as an integral ideal.127

The nonzero fractional ideals of Z naturally form a multiplicative group (whereas there is no128

integral ideal I ⊆ Z such that I ∗ (2Z) = (1)). The statement that every ideal is generated129

by a single element translates to the fact that the quotient group of nonzero fractional ideals130

modulo Q× (where a
b ∈ Q× corresponds to 1

b aZ) is trivial.131

It turns out that this quotient group can be defined for every ring of integers OK .132

The fundamental theoretical notion beneath this construction is that of Dedekind domain:133

ITP 2021
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these are integral domains D which are Noetherian (every ideal of D is finitely generated),134

integrally closed (if an element x in the fraction field of D is a root of a monic polynomial135

with coefficients in D, then actually x ∈ D), and of Krull dimension at most 1 (every nonzero136

prime ideal of D is maximal). It can be proved that the nonzero fractional ideals of D again137

form a group, and the quotient of this group by the image of the natural embedding of138

(Frac D)× is called the (ideal) class group ClD.139

What is arithmetically crucial is the theorem ensuring that the ring of integers OK of140

every number field K is a Dedekind domain, and that in this case the class group ClOK
is141

actually finite. In particular, ClOK
can be seen as “measuring” how far ideals of OK are142

from being generated by a single element and, consequently, as a measure of the failure of143

unique factorization. The order of ClOK
is called the class number of K. Intuitively, then,144

the smaller the class number, the fewer factorizations are possible.145

The statements in the previous paragraph also hold for function fields, namely fields146

which are finite extensions of Fq(t) ≃ FracFq[t], where Fq is a finite field with q elements.147

Recall that when q is a prime number, Fq is simply the field Z/qZ. A field which is either a148

number field or a function field is called a global field.149

In the next sections we will describe the formalization of the above concepts.150

3 Number fields, global fields and rings of integers151

We refer the reader to Section 2 for the mathematical background needed in this section.152

We formalized number fields as the following typeclass:153

154

class is_number_field (K : Type*) [field K] : Prop :=155

[cz : char_zero K] [fd : finite_dimensional Q K]156
157

The class keyword declares a structure type (in other words, a type of records) and enables158

typeclass inference for terms of this type. Round brackets mark parameters explicitly supplied159

by the user, such as (K : Type*), square brackets mark instance parameters inferred by the160

typeclass system, such as [field K]. The condition [cz : char_zero K] states that K has161

characteristic zero, so the canonical ring homomorphism Z → K is an embedding. This implies162

that there is a Q-algebra structure on K (found by typeclass instance search), endowing K with163

the Q-vector space structure used in the [fd : finite_dimensional Q K] hypothesis.164

We defined the function fields K over a finite field Fq using the following typeclass:165

166

class is_function_field_over {Fq F : Type*} [field Fq] [fintype Fq]167

[field F] (f : fraction_map (polynomial Fq) F) (L : Type*) [field L]168

[algebra f.codomain L] : Prop :=169

[fd : finite_dimensional f.codomain L]170
171

Curly brackets mark implicit parameters inferred through unification, such as {Fq F :172

Type*}. The map f witnesses that F is a fraction field of the polynomial ring Fq[t], the173

notation f.codomain endows F with the Fq[t]-algebra structure of Fq(t). We present a more174

detailed analysis of fraction_map in Section 3.5.175

3.1 Field extensions176

The definition of is_number_field illustrates our treatment of field extensions. A field L177

containing a subfield K is said to be a field extension L/K. Often we encounter towers of178

field extensions: we might have that Q is contained in K, K is contained in L, L is contained179
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in an algebraic closure K of K, and K is contained in C. We might formalize this situation180

by viewing Q, K, L and K as sets of complex numbers C and defining field extensions as181

subset relations between these subfields. This way, no coercions need to be inserted in order182

to map elements of one field into a larger field. Unfortunately, we can only avoid coercions183

as far as we are able to stay within one largest field. For example, the definition of complex184

numbers depends on many results for rational numbers, which would need to be proved185

again, or transported, for the subfield of C isomorphic to Q.186

Instead, we formalized results about field extensions through parametrization. The fields187

K and L can be arbitrary types and the hypothesis “L is a field extension of K” is represented188

by an instance parameter [algebra K L] denoting a K-algebra structure on L. There are189

multiple possible K-algebra structures for a field L and Lean does not enforce uniqueness190

of typeclass instances, but the mathlib maintainers try to ensure all instances that can be191

inferred are definitionally equal. The algebra structure provides us with a canonical ring192

homomorphism algebra_map K L : K → L; this map is injective because K and L are fields.193

In other words, field extensions are given by their canonical embeddings.194

3.2 Scalar towers195

The main drawback of using arbitrary embeddings to represent field extensions is that we196

need to prove that these maps commute. For example, we might start with a field extension197

L/Q, then define a subfield K of L, resulting in a tower of extensions L/K/Q. In such a198

tower, the map Q → L should be equal to the composition Q → K followed by K → L. Such199

an equality cannot always be achieved by defining the map Q → L to be this composition:200

in the example, the map Q → K depends on the map Q → L.201

The solution in mathlib is to parametrize over all three maps, as long a there is also202

a proof of coherence: a hypothesis of the form “L/K/F is a tower of field extensions” is203

translated into three instance parameters [algebra F K], [algebra K L] and [algebra204

F L], along with an additional parameter [is_scalar_tower F K L] expressing that the205

maps commute.206

The is_scalar_tower typeclass derives its name from its applicability to any three types207

between which exist scalar multiplication operations:208

209

class is_scalar_tower (M N α : Type*)210

[has_scalar M N] [has_scalar N α] [has_scalar M α] : Prop :=211

(smul_assoc : ∀ (x : M) (y : N) (z : α), (x · y) · z = x · (y · z))212
213

For example, if R is a ring, A is an R-algebra and M an A-module, we can state that M214

is also an R-module by adding a [is_scalar_tower R A M] parameter. Since x · y for an215

R-algebra A is defined as algebra_map R A x * y, applying smul_assoc for each x : K216

with y = (1 : L) and z = (1 : F ) shows that the algebra_maps indeed commute.217

Common is_scalar_tower instances are declared in mathlib, such as for the maps218

R → S → A when S is a R-subalgebra of A. The effect is that almost all coherence proof219

obligations are automated through typeclass instance search.220

3.3 Rings of integers221

When K is a number field, the ring OK of integers in K is defined as the integral closure of222

Z in K. This is the subring containing those x : K that are the roots of monic polynomials223

with coefficients in Z, which we formalized as:224

ITP 2021
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225

def number_field.ring_of_integers (K : Type*) [field K]226

[is_number_field K] : subalgebra Z K :=227

integral_closure Z K228
229

where integral_closure was previously defined in mathlib.230

When K is a function field over the finite field Fq, we defined OK analogously as231

integral_closure (polynomial K) F. To treat both definitions of ring of integers on an232

equal footing, we will work with the integral closure of any principal ideal domain when233

possible.234

3.4 Subobjects235

The ring of integers is one example of a subobject, such as a subfield, subring or subalgebra,236

defined through a characteristic predicate. In mathlib, subobjects are “bundled”, in the form237

of a structure comprising the carrier set and proofs showing the carrier set is closed under238

the relevant operations.239

Two new subobjects that we defined in our development were subfield as well as240

intermediate_field. We defined a subfield of a field K as a subset of K that contains 0241

and 1 and is closed under addition, negation, multiplication and taking inverses. If L is a field242

extension of K, we defined an intermediate field as a subfield that is also a K-subalgebra:243

a subfield that contains the image of algebra_map K L. Other examples of subobjects244

available in mathlib are submonoids, subgroups and submodules (with ideals as a special case245

of submodules).246

The new definitions found immediate use: soon after we contributed our definition of247

intermediate_field to mathlib, the Berkeley Galois theory group used it in a formalization248

of the primitive element theorem. Soon after the primitive element theorem was merged249

into mathlib, we used it in our development of the trace form. This anecdote illustrates the250

decentralized development style of mathlib, with different groups and people building on each251

other’s results in a collaborative process.252

By providing a coercion from subobjects to types, sending a subobject S to the subtype253

of all elements of S, and putting typeclass instances on this subtype, we could reason about254

inductively defined rings such as Z and subrings such as integral_closure Z K uniformly.255

If S : subfield K, there is a canonical ring embedding, the map that sends x : S to K256

by “forgetting” that x ∈ S, and we registered this map as an algebra S K instance, also257

allowing us to treat field extensions of the form Q → C and subfields uniformly. Similarly,258

for F : intermediate_field K L, we defined the corresponding algebra K F, algebra F259

L and is_scalar_tower K F L instances.260

3.5 Fields of fractions261

The fraction field Frac R of an integral domain R can be defined explicitly as a quotient262

type as follows: starting from the set of pairs (a, b) with a, b ∈ R such that b ̸= 0, one263

quotients by the equivalence relation generated by (αa, αb) ∼ (a, b) for all α ̸= 0 : R, writing264

the equivalence class of (a, b) as a
b . It can easily be proved that the ring structure on265

R extends uniquely to a field structure on Frac R; in mathlib this construction is called266

fraction_ring R. When R = Z, this yields the traditional description of Q as the set of267

equivalence classes of fractions, where 2
3 = −4

−6 , etc. The drawback of this construction is that268

there are many other fields that can serve as the field of fractions for the same ring. Consider269
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the field {z ∈ C : ℜz ∈ Q, ℑz ∈ Q}, which is isomorphic to Frac(Z[i]) but not definitionally270

equal to it.271

The strategy used in mathlib is to rather allow for many different fraction fields of our272

given integral domain R, as fields F along with an injective fraction map f : R → F which273

witnesses that all elements of F are “fractions” of elements of R, and to parametrize every274

result over the choice of f . In the definition used by mathlib, a fraction map is a special275

case of a localization map. Different localizations restrict the denominators to different276

multiplicative submonoids of R \ {0}.277

The conditions on f imply that F is the smallest field containing R, expressed by the278

following unique mapping property. If g : R → A is an injective map to a ring A such that279

g(x) has a multiplicative inverse for all x ̸= 0 : R, then it can be extended uniquely to a map280

F → A compatible with f and g. In particular, if f1 : R → F1 and f2 : R → F2 are fraction281

maps, they induce an isomorphism F1 ≃ F2. The construction of Frac R then results in a282

field of fractions (with fraction map fraction_ring.of R) rather than the field of fractions.283

This comes at a price: informally, at any given stage of one’s reasoning, the field F is284

fixed and the map f : R → F is applied implicitly, just viewing every x : R as x : F . It is now285

impossible to view f(R) ≤ F as an inclusion of subalgebras, because the map f is needed286

explicitly to give the R-algebra structure on F . We use a type synonym f.codomain := F287

and instantiate the R-algebra structure given by f on this synonym.288

3.6 Representing monogenic field extensions289

In Section 2 we have informally said that every number field K can be written as K = Q(α)290

for a root α of an irreducible polynomial P ∈ Q[X]. This can be made precise in several ways.291

For instance, one can consider a large field E (of characteristic 0) where P splits completely,292

then choose a root α ∈ E and let Q(α) be the smallest subfield of E containing α. Or, one293

can consider the quotient ring Q[X]/P and observe that this is a field where the class X294

(mod P ) is a root of P . The assignment α 7→ X (mod P ) yields an isomorphism of the two295

fields, but any other choice of a root α′ ∈ E leads to another isomorphism Q(α′) ∼= Q[X]/P .296

Although mathematically we often tacitly identify the constructions, there is no canonical297

representation of the monogenic extensions of Q, those which can be obtained by adjoining a298

single root of one polynomial.299

The same continues to hold if we replace the base field Q with another field F , thus300

considering extensions of the form F (α), now requiring that α be a root of some P ∈ F [X].301

Various constructions of F (α) have already been formalized in mathlib. The ability to switch302

between these representations is important: sometimes K and F are fixed and we want an303

arbitrary α; sometimes α is fixed and we want an arbitrary type representing F (α).304

To find a uniform way to reason about all these definitions, we chose to formalize the305

notion of power basis to represent monogenic field extensions: this is a basis of the form306

1, x, x2, . . . , xn−1 : K (viewing K as a F -vector space). We defined a structure type bundling307

the information of a power basis. Omitting some generalizations not needed in this paper,308

the definition reads:309

310

structure power_basis (F K : Type*) [field F] [field K] [algebra F K] :=311

(gen : S) (dim : N)312

(is_basis : is_basis F (λ (i : fin dim), gen ^ (i : N)))313
314

We formalized that the previously defined notions of monogenic field extensions are equivalent315

to the existence of a power basis.316

ITP 2021
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With the power_basis structure, we gained the ability to parametrize our results,317

being able to choose the F and K in a monogenic field extension K/F , or being able to318

choose the α generating F (α) (by setting power_basis.gen pb equal to α). To specialize319

a result from an arbitrary K with a power basis over F to a specific value of K such as320

F (α) = algebra.adjoin F {α}, one can apply the result to the power basis generated by321

α and rewrite power_basis.gen (adjoin.power_basis F α) = α.322

4 Dedekind domains323

The right setting to study algebraic properties of number fields are Dedekind domains. We324

formalized fundamental results on Dedekind domains, including the equivalence of two325

definitions of Dedekind domain.326

4.1 Definitions327

There are various equivalent conditions, used at various times, for an integral domain D to328

be a Dedekind domain. The following three have been formalized in mathlib:329

is_dedekind_domain D: D is a Noetherian integral domain, integrally closed in its330

fraction field and has Krull dimension at most 1;331

is_dedekind_domain_inv D: D is an integral domain and nonzero fractional ideals of D332

have a multiplicative inverse (we discuss the notion and formalization of fractional ideals333

in Section 4.2);334

is_dedekind_domain_dvr D: D is a Noetherian integral domain and the localization of335

D at each nonzero prime ideal is a discrete valuation ring.336

Note that fields are Dedekind domains according to these conventions.337

The mathlib community chose is_dedekind_domain as the main definition, since this338

condition is usually the one checked in practice [17]. The other two equivalent definitions were339

added to mathlib, but before formalizing the proof that they are indeed equivalent. Having340

multiple definitions allowed us to do our work in parallel without depending on unformalized341

results. For example, the proof of unique ideal factorization in a Dedekind domain ini-342

tially assumed is_dedekind_domain_inv D, and the proof that the ring of integers OK is a343

Dedekind domain concluded is_dedekind_domain (ring_of_integers K). After the equiv-344

alence between is_dedekind_domain D and is_dedekind_domain_inv D was formalized,345

we could easily replace usages of is_dedekind_domain_inv with is_dedekind_domain.346

The conditions is_dedekind_domain and is_dedekind_domain_inv require a fraction347

field F , although the truth value of the predicates does not depend on the choice of F .348

For ease of use, we let the type of is_dedekind_domain depend only on the domain D by349

instantiating F in the definition as fraction_ring D. From now on, we fix a fraction map350

f : D → F .351

352

class is_dedekind_domain (D : Type*) [integral_domain D] : Prop :=353

(to_is_noetherian_ring : is_noetherian_ring D)354

(dimension_le_one : dimension_le_one D)355

(is_integrally_closed : integral_closure D (fraction_ring D) = ⊥)356
357

Applications of is_dedekind_domain can choose a specific fraction field through the following358

lemma exposing the alternate definition:359

360

lemma is_dedekind_domain_iff (f : fraction_map D F) :361

is_dedekind_domain D ↔362
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is_noetherian_ring D ∧ dimension_le_one D ∧363

integral_closure D f.codomain = ⊥364
365

We marked is_dedekind_domain as a typeclass by using the keyword class rather366

than structure, allowing the typeclass system to automatically infer the Dedekind domain367

structure when an appropriate instance is declared, such as for PIDs or rings of integers.368

4.2 Fractional ideals369

The notion that is pivotal to the definition of the ideal class group of a Dedekind domain370

is that of fractional ideals: given any integral domain R with a field of fractions F , these371

are R-submodules J of F such that there is an x : R with xJ ⊆ R. For a Dedekind domain,372

they form a group under multiplication. As seen in Section 3.5, this notion depends on the373

field F as well as on the fraction map f : R → F . A more precise way of stating the above374

condition is then f(x)J ⊆ f(R). We formalized the definition of fractional ideals relative375

to a map f : R → F as a type fractional_ideal f. The structure of fractional ideals376

does not depend on the choice of a fraction map, which we formalized as an isomorphism377

fractional_ideal.canonical_equiv between the fractional ideals relative to fraction maps378

f1 : R → F1 and f2 : R → F2.379

We defined the addition, multiplication and intersection operations on fractional ideals,380

by showing the corresponding operations on submodules map fractional ideals to fractional381

ideals. We also formalized that these operations give a commutative semiring structure on382

the type of fractional ideals. For example, multiplication of fractional ideals is defined as383

384

lemma fractional_mul (I J : fractional_ideal f) :385

is_fractional f (I.1 * J.1) := _ -- proof omitted386

387

instance : has_mul (fractional_ideal f) :=388

⟨λ I J, ⟨I.1 * J.1, fractional_mul I J⟩⟩389
390

Defining the quotient of two fractional ideals requires slightly more work. Consider any391

R-algebra A and an injection R ↪→ A. Given ideals I, J ≤ R, the submodule quotient392

I/J ≤ A is characterized by the property393

394

lemma submodule.mem_div_iff_forall_mul_mem {x : A} {I J : submodule R A} :395

x ∈ I / J ↔ ∀ y ∈ J, x * y ∈ I396
397

Beware that the notation 1/I might be misleading here: indeed, for general integral domains,398

the equality I ∗ 1/I = 1 might not hold. As an example, one can consider the ideal (X, Y ) in399

C[X, Y ]. On the other hand, we formalized that this equality holds for Dedekind domains400

(Section 4.3) as the following lemma:401

402

lemma fractional_ideal.is_unit {hD : is_dedekind_domain D}403

(I : fractional_ideal f) (hne : I ̸= ⊥) : is_unit I404
405

This justifies the notation I−1 = 1/I. In fact, we define this notation even for the ideal 0,406

by declaring that 0−1 = 0. This reflects the existence of the typeclass group_with_zero in407

mathlib, consisting of groups endowed with an extra element 0 whose inverse is again 0.408

Moreover, mathlib used to define a/b := a ∗ b−1, but our definition of I−1 = 1/I would409

cause circularity. This led us to a major refactor of this core definition. In particular, we410

had to weaken the definitional equality to a proposition; this involved many small changes411

throughout mathlib.412
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4.3 Equivalence of the definitions413

We now describe how we proved and formalized that the two definitions is_dedekind_domain414

and is_dedekind_domain_inv of being a Dedekind domain are equivalent. Let D be a415

Dedekind domain, and f : D → F a fraction map to a field of fractions F of D.416

To show that is_dedekind_domain_inv implies is_dedekind_domain, we follow the417

proof given by Fröhlich in [11, Chapter 1, § 2, Proposition 1.2.1]. A constant challenge that418

was faced while coding this proof was already mentioned in Section 3.5, namely the fact that419

elements of the ring must be traced along the fraction map. The proofs for being integrally420

closed and of dimension being less than or equal to 1 are fairly straightforward.421

Formalizing the Noetherian condition was the most challenging. Fröhlich considers422

elements a1, . . . , an ∈ I and b1, . . . , bn ∈ I−1 for any nonempty fractional ideal I, satisfying423 ∑
i aibi = 1. However, it is quite challenging to prove that an element of the product of two D-424

submodules A and B must be of the form
∑m

i=1 ai ∗bi, for ai ∈ A and bi ∈ B for all 1 ≤ i ≤ m.425

Instead, we show that, for every element of A∗B, there are finite sets T ⊆ A, T ′ ⊆ B such that426

x : span (T * T’), formalized as submodule.mem_span_mul_finite_of_mem_mul. Now427

considering a nonzero integral ideal I of the ring D, its invertibility allows to write 1 : (1 :428

fractional_ideal f) = I * 1 / I. Hence, we obtain finite sets T ⊂ I and T ′ ⊂ 1/I such429

that 1 is contained in the D-span of T ∗ T ′. We used norm_cast to resolve most coercions,430

however, this tactic did not solve coercions coming from the fraction map. With coercions,431

the actual statement of the latter expression in Lean is ↑T’ ⊆ ↑↑(1 / ↑I), which reads432

433

(T’ : set (fraction_ring.of D).codomain) ⊆434

(((1 / (I : fractional_ideal (fraction_ring.of D)))435

: submodule D (fraction_ring.of D).codomain)436

: set (fraction_ring.of D).codomain437
438

The lemma fg_of_one_mem_span_mul then shows that I is finitely generated, concluding439

the proof.440

The theorem fractional_ideal.mul_inv_cancel proves the converse, namely that441

is_dedekind_domain implies is_dedekind_domain_inv. The classical proof consists of442

three steps: first, every maximal ideal M ⊆ D, seen as a fractional ideal, is invertible;443

secondly, every nonzero ideal is invertible, using that it is contained in a maximal ideal;444

thirdly, the fact that every fractional ideal J satisfies xJ ≤ I for a suitable x ∈ D and an445

ideal I ⊆ D implies that every fractional ideal is invertible, concluding the proof that nonzero446

fractional ideals form a group. The third step was easy, building upon the material developed447

for the general theory of fractional_ideals f. Concerning the first two, we found that448

passing from the case where M is maximal to the general case required more code than449

directly showing invertibility of arbitrary nonzero ideals. The formal statement reads450

451

lemma coe_ideal_mul_one_div [hD : is_dedekind_domain D]452

(I : ideal D) (hne : I ̸= ⊥) :453

↑I * ((1 : fractional_ideal f) / ↑I) = (1 : fractional_ideal f)454
455

from where it becomes apparent that we had to repeatedly distinguish between I : ideal456

D, and its coercion ↑I : fractional_ideal f although these objects, from a mathematical457

point of view, are identical.458

The formal proof of the above result relies on the lemma exists_not_mem_one_of_ne_bot,459

which says that for every non-trivial ideal 0 ⊊ I ⊊ D, there exists an element in the field F460

which is not integral (so, not in f(D)) but lies in 1/I. The proof begins by invoking that461

every nonzero ideal in the Noetherian ring D contains a product of nonzero prime ideals. This462
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result was not previously available in mathlib. The dimension condition shows its full force463

when applying this lemma: each prime ideal in the product, being nonzero, will be maximal464

because the Krull dimension of D is at most 1; from this, exists_not_mem_one_of_ne_bot465

follows easily. Having the above lemma at our disposal, we were able to prove that every466

ideal I ̸= 0 is invertible by arguing by contradiction: if I ∗ 1/I ⪇ D, we can find an element467

x ∈ F \ f(R) which is in 1/(1 ∗ 1/I) thanks to exists_not_mem_one_of_ne_bot and some468

easy algebraic manipulation will imply that x is actually integral over D. Since D is integrally469

closed, it must lie in f(D), contradicting the construction of x. Combining these results470

gives the equivalence between the two conditions for being a Dedekind domain.471

5 Principal ideal domains are Dedekind472

As an example of our definitions, we discuss in some detail our formalization of the fact473

that a principal ideal domain is a Dedekind domain. There is no explicit definition of474

PIDs in mathlib, rather it is split up into two hypotheses. One uses [integral_domain R]475

[is_principal_ideal_ring R] to denote a PID R, where is_principal_ideal_ring is a476

typeclass defined for all commutative rings:477

478

class is_principal_ideal_ring (R : Type*) [comm_ring R] : Prop :=479

(principal : ∀ (I : ideal R), is_principal I)480
481

Our proof that the hypotheses [integral_domain R] [is_principal_ideal_ring R]482

imply is_dedekind_domain R was relatively short:483

484

instance principal_ideal_ring.to_dedekind_domain (R : Type*)485

[integral_domain R] [is_principal_ideal_ring R] :486

is_dedekind_domain R :=487

⟨principal_ideal_ring.is_noetherian_ring,488

dimension_le_one.principal_ideal_ring _,489

unique_factorization_monoid.integrally_closed (fraction_ring.of R)⟩490
491

The instance keyword marks the declaration for inference by the typeclass system.492

The Noetherian property of a Dedekind domain followed easily by the previously defined493

lemma principal_ideal_ring.is_noetherian_ring, since, by definition, each ideal in a494

principal ideal ring is finitely generated (by a single element).495

We proved the lemma dimension_le_one.principal_ideal_ring, which is an instanti-496

ation of the existing result is_prime.to_maximal_ideal, showing a nonzero prime ideal in497

a PID is maximal. The latter lemma uses the characterization that I is a maximal ideal if498

and only if any strictly larger ideal J ⊋ I is the full ring R. If I is a nonzero prime ideal499

and J ⊋ I in the PID R, we have that the generator j of J is a divisor of the generator i of500

I. Since I is prime, this implies that either j ∈ I, contradicting the assumption that J ⊋ I,501

i = 0, contradicting that I is nonzero, or that j is a unit, implying J = R as desired.502

The final condition of a PID being integrally closed was the most challenging. We used the503

previously defined instance principal_ideal_ring.to_unique_factorization_monoid that504

a PID is a unique factorisation monoid (UFM), to instantiate our proof that every UFM is505

integrally closed. In the same way that principal ideal domains are generalized to principal506

ideal rings, mathlib generalizes unique factorization domains to unique factorization monoids.507

A commutative monoid R with an absorbing element 0 and injectivity of multiplication is508

defined to be a UFM, if the relation “x properly divides y” is well-founded (implying each509

element can be factored as a product of irreducibles) and an element of R is prime if and only510
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if it is irreducible (implying the factorization is unique). The first condition is satisfied for a511

PID since the Noetherian property implies that the division relation is well-founded. The512

second condition followed from principal_ideal_ring.irreducible_iff_prime. To prove513

that an irreducible element p is prime, the proof uses that prime elements generate prime514

ideals and irreducible elements of a PID generate maximal ideals. Since all maximal ideals are515

prime ideals, the ideal generated by p is maximal, hence prime, thus p is prime. We proved516

the lemma irreducible_of_prime, which shows the converse holds in any commutative517

monoid with zero.518

To show that a UFM is integrally closed, we first formalized the Rational Root Theorem,519

named denom_dvd_of_is_root, which states that for a polynomial p : R[X] and an element520

of the fraction field x : Frac R such that p(x) = 0, the denominator of x divides the leading521

coefficient of p. If x is integral with minimal polynomial p, the leading coefficient is 1,522

therefore the denominator is a unit and x is an element of R. This gave us the required523

lemma unique_factorization_monoid.integrally_closed, which states that the integral524

closure of R in its fraction field is R itself.525

6 Rings of integers are Dedekind domains526

An important classical result in algebraic number theory is that the ring of integers of527

a number field K, defined as the integral closure of Z in K, is a Dedekind domain. We528

formalized a stronger result: given a Dedekind domain D and a field of fractions F , if L is a529

finite separable extension of F , then the integral closure of D in L is a Dedekind domain with530

fraction field L. Our approach was adapted from Neukirch [17, Theorem 3.1]. Throughout531

this section, let D be a Dedekind domain with a field of fractions F (given by the map532

f : D → F ), L a finite, separable field extension of F and let S denote the integral closure of533

D in L.534

The first step was to show that L is a field of fractions for the integral closure, namely,535

there is a map fraction_map_of_finite_extension f L : fraction_map S L. The main536

content of fraction_map_of_finite_extension consisted of showing that all elements x : L537

can be written as y/z for elements y ∈ S, z ∈ D ⊆ S; the standard proof of this fact (see [7,538

Theorem 15.29]) formalized readily.539

We could then show that the integral closure of D in L is a Dedekind domain, by proving540

it is integrally closed in L, has Krull dimension at most 1 and is Noetherian. The fact that541

the integral closure is integrally closed was immediate.542

To show the Krull dimension is at most 1, we needed to develop basic going-up theory543

for ideals. In particular, we showed that an ideal I in an integral extension is maximal if it544

lies over a maximal ideal, and used a result already available in mathlib that a prime ideal I545

in an integral extension lies over a prime ideal.546

547

lemma is_maximal_of_is_integral_of_is_maximal_comap548

(I : ideal S) [is_prime I]549

(hI : is_maximal (comap f I)) : is_maximal I550

theorem is_prime.comap (I : ideal S) [hI : is_prime I] :551

is_prime (comap f I)552
553

The final condition, that the integral closure S of D in L is a Noetherian ring, required554

the most work. We started by following the first half of [7, Theorem 15.29], so that it555

sufficed to find a nondegenerate bilinear form B such that all integral x, y : L satisfy556

B(x, y) ∈ integral_closure D L. We formalized the results in Neukirch [17, §§ 2.5–2.8],557
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and showed that the trace form is a bilinear form satisfying these requirements.558

6.1 The trace form559

In the notation from the previous section, consider the bilinear form lmul := λ x y : L,560

x * y. The trace of the linear map lmul x is called the algebra trace TrL/F (x) of x. We561

defined the algebra trace as a linear map, in this case from L to F :562

563

noncomputable def trace : L →l[F] F :=564

linear_map.comp (linear_map.trace F L) (to_linear_map (lmul F L))565
566

This definition was marked noncomputable since linear_map.trace makes a case distinction567

on the existence of a basis, choosing an arbitrary basis if one exists and returning 0 otherwise.568

This latter case did not occur in our development.569

We defined the trace form to be an F -bilinear form on L, mapping x, y : L to TrL/F (xy).570

571

noncomputable def trace_form : bilin_form F L :=572

{ bilin := λ x y, trace F L (x * y), .. /- proofs omitted -/ }573
574

In the following, let E/L/F be a tower of finite extensions of fields, namely we assumed575

[algebra E L] [algebra L F] [algebra E F] [is_scalar_tower E L F], as described576

in Section 3.2.577

The value of the trace depends on the choice of E and L; we formalized this as lemmas578

trace_algebra_map x : trace E L (algebra_map E L x) = findim E L • x as well as579

trace_comp L x : trace E F x = trace E L (trace L F x). These results followed by580

direct computation.581

To compute TrL/F (x), it therefore suffices to consider the trace of x in the smallest field582

containing x and F , which is the monogenic extension F (x) discussed in Section 3.6. There583

is a nice formula for the trace in F (x), although the terms in this formula are elements in a584

larger field E (such as the splitting field of the minimal polynomial of x). In formalizing this585

formula, we first mapped the trace to F using the canonical embedding algebra_map E F,586

which gave the following lemma statement:587

588

lemma power_basis.trace_gen_eq_sum_roots (pb : power_basis F L)589

(h : polynomial.splits (algebra_map F E) pb.minpoly_gen) :590

algebra_map F E (trace F L pb.gen) =591

sum (roots (map (algebra_map F E) pb.minpoly_gen))592
593

We formulated the lemma in terms of the power basis, since we needed to use it for F (x)594

here and for an arbitrary finite separable extension L/F later in the proof.595

The elements of (pb.minpoly_gen.map (algebra_map F E)).roots are called conju-596

gates of x in E. Each conjugate of x is integral since it is a root of (the same) monic597

polynomial, and integer multiples and sums of integral elements are integral. Combining598

trace_gen_eq_sum_roots and trace_algebra_map showed that the trace of x is an integer599

multiple (namely findim F(x) L) of a sum of conjugate roots, hence we concluded that the600

trace (and trace form) of an integral element is also integral.601

Finally, we showed that the trace form is nondegenerate, following Neukirch [17, Proposi-602

tion 2.8]. Since L/F is a finite, separable field extension, it has a power basis pb generated603

by x. Letting xk denote the k-th conjugate of x in an algebraically closed field E/L/F ,604

the main difficulty was in checking the equality
∑

k xi+j
k = TrL/F (xi+j). Directly applying605

trace_gen_eq_sum_roots was tempting, since we had a sum over conjugates of powers on606
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both sides. However, the two expressions did not precisely match: the left hand side is a sum607

of conjugates of x, where each conjugate is raised to the power i + j, while the conclusion of608

trace_gen_eq_sum_roots resulted in a sum over conjugates of xi+j .609

Instead, the paper proof switched here to an equivalent definition of conjugate: the610

conjugates of x in E are the images (counted with multiplicity) of x under each embedding611

σ : F (x) → E that fixes F . This equivalence between the two notions of conjugate was612

contributed to mathlib by the Berkeley group in the week before we realized we needed613

it. Mapping trace_gen_eq_sum_roots through the equivalence gave TrL/F (x) =
∑

σ σx.614

Since each σ is a ring homomorphism, σ xi+j = (σ x)i+j , so the conjugates of xi+j are the615

(i + j)-th powers of conjugates of x, which concluded the proof.616

7 Class group and class number617

Given a Dedekind domain with fraction map f : D → F , we formalized the notion of618

class group in Lean by defining a map to_principal_ideal f:units f.codomain → units619

(fractional_ideal f), and defined the class group as620

621

def class_group := quotient_group.quotient (to_principal_ideal (range f))622
623

In general, Dedekind domains can have infinite class groups. However, as discussed in624

Section 2, the rings of integers of global fields have finite class groups.625

We let K be a number field and K ′ be a function field, with ring of integers OK and626

OK′ (w.r.t. a fixed Fq[t]), respectively. Most proofs of the finiteness of ClOK
one finds627

in a modern textbook (see [17, Theorems 4.4, 5.3, 6.3]) depend on Minkowski’s lattice628

point theorem, a result from the geometry of numbers (which has been formalized in629

Isabelle/HOL [8]). Extending this proof to show the finiteness of ClOK′ is quite involved630

and does not result in a uniform proof for ClOK
and ClOK′ . Our formalization adapted and631

generalized a classical approach to the finiteness of ClOK
, where the use of Minkowski’s632

theorem is replaced by the pigeonhole principle. For an informal writeup of the proof, used633

in the formalization efforts, see https://github.com/lean-forward/class-number/blob/634

main/FiniteClassGroup.pdf. The classical approach seems to go back to Kronecker and635

can be found, for instance, in [14]. We note that some other “uniform” approaches can be636

found in [1] and [19].637

Let D be an Euclidean domain: in particular, it will be a PID and hence a Dedekind638

domain. Given a fraction map f : D → F , let L be a finite separable field extension of639

F . We formalized, in the theorem class_group.finite_of_admissible, that the integral640

closure of D in L has a finite class group if D has an “admissible” absolute value abs. Very641

informally, the admissibility conditions require that the remainder operator produces values642

that are not too far apart. Formally, we defined the type of admissible absolute values on D643

as follows, where to_fun stands for an application of the absolute value operator:644

645

structure admissible_absolute_value (D : Type*) [euclidean_domain D]646

extends euclidean_absolute_value D Z :=647

(card : R → N) (exists_partition :648

∀ (n : N) (ε > (0 : R) (b ̸= (0 : D)) (A : fin n → D),649

∃ (t : fin n → fin (card ε)), ∀ i0 i1, t i0 = t i1 →650

(to_fun (A i1 % b - A i0 % b) : R) < to_fun b · ε)651
652

The above condition formalizes and generalizes an intermediate result in paper finiteness653

proofs; the different proofs for number fields and function fields (still assuming L/F separable)654

https://github.com/lean-forward/class-number/blob/main/FiniteClassGroup.pdf
https://github.com/lean-forward/class-number/blob/main/FiniteClassGroup.pdf
https://github.com/lean-forward/class-number/blob/main/FiniteClassGroup.pdf
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become the same after this point. We used division with remainder to replace the fractional655

part operator on F in the classical proof, which was essential to incorporate function fields,656

and at the same time allowing our proof to stay entirely within D to avoid coercions.657

The absolute value extends to a norm abs_norm f abs:integral_closure D L → Z.658

We used the admissibility of abs to find a finite set finset_approx L f abs of elements of659

D, such that the following generalization of [14, Theorem 12.2.1] holds.660

661

theorem exists_mem_finset_approx’ (a b : integral_closure D L) :=662

∃ (q : integral_closure D L) (r ∈ finset_approx L f abs),663

abs_norm f abs (r · a - q * b) < abs_norm f abs b664
665

After this, the classical approach mentioned above formalized smoothly.666

It remained to define an admissible absolute value for Z and Fq[t]. On Z, it was667

straightforward to formalize that the usual Archimedean absolute value fulfils the requirements.668

For Fq[t], we showed that |f |deg := qdeg f for f ∈ Fq[t] is the required admissible absolute669

value; observe that this was somewhat more involved to formalize. We concluded that when670

K is a global field, restricting to separable extensions of Fq(t) in the function field case, the671

class group is finite:672

673

noncomputable instance : fintype674

(class_group (number_field.ring_of_integers.fraction_map K)) :=675

class_group.finite_of_admissible K int.fraction_map int.admissible_abs676

677

noncomputable instance [is_separable f.codomain K] : fintype678

(class_group (function_field.ring_of_integers.fraction_map f K)) :=679

class_group.finite_of_admissible F f polynomial.admissible_card_pow_degree680
681

Finally, we defined number_field.class_number and function_field.class_number682

as the cardinality of the respective class groups.683

8 Discussion684

8.1 Related work685

Broadly speaking, one could see the formalization work as part of number theory. There are686

several formalization results in this direction. Most notably, Eberl formalized a substantial687

part of analytic number theory in Isabelle/HOL [9]. Narrowing somewhat to a more algebraic688

setting, we are not aware of any other formal developments of fractional ideals, Dedekind689

domains or class groups of global fields.690

There are many libraries formalizing basic notions of commutative algebra such as691

field extensions and ideals, including the Mathematical Components library in Coq [15],692

the algebraic library for Isabelle/HOL [2], the set.mm database for MetaMath [16] and693

the Mizar Mathematical Library [13]. The field of algebraic numbers, or more generally694

algebraic closures of arbitrary fields, are also available in many provers. For example,695

Blot [3] formalized algebraic numbers in Coq, Thiemann, Yamada and Joosten [22] in696

Isabelle/HOL, Carneiro [4] in MetaMath, and Watase [23] in Mizar. To our knowledge, the697

Coq Mathematical Components library is the only formal development beside ours specifically698

dealing with number fields [15, field/algnum.v].699

Apart from the general theory of algebraic numbers, there are formalizations of specific700

rings of integers. For instance, the Gaussian integers Z[i] have been formalized in Isabelle/HOL701

by Eberl [10], in MetaMath by Carneiro [5] and in Mizar by Futa, Mizushima, and Okazaki [12].702
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Eberl’s Isabelle/HOL formalization deserves special mention in this context since it introduces703

techniques from algebraic number theory, defining the integer-valued norm on Z[i] and704

classifying the prime elements of Z[i].705

8.2 Future directions706

Having formalized various basic results of algebraic number theory, there are several natural707

directions for future work, including formalizing some of the following results.708

Finiteness of the class group for rings of integers in all global fields. This would entail,709

apart from some details at the end of the proof, dropping the separability condition in710

the result mentioned in the first paragraph of Section 6.711

The group of units of the ring of integers in a number field is finitely generated, or slightly712

stronger, Dirichlet’s unit theorem [17, Theorem 7.4] (and the function field analogue).713

Other finiteness results in algebraic number theory, most notably Hermite’s theorem714

about the existence of finitely many number fields, up to isomorphism, with bounded715

discriminant [17, Theorem 2.16] (and the function field analogue).716

Class number computations, say of quadratic number fields. This could be part of verifying717

correctness of number theoretic software, such as KASH/KANT [18] and PARI/GP [21].718

Applications of algebraic number theory to solving Diophantine equations, such as719

determining all pairs of integers (x, y) such that y2 = x3 + D for given nonzero D ∈ Z.720

8.3 Conclusion721

In this project, we confirmed the rule that the hardest part of formalization is to get the722

definitions right. Once this is accomplished, the paper proof (sometimes first adapted with723

formalization in mind) almost always translates into a formal proof without too much effort.724

In particular, we regularly had to invent abstractions to treat instances of the “same” situation725

uniformly. Instead of fixing a canonical representation, be it K ⊆ L ⊆ F as subfields or726

the field of fractions Frac R, or the monogenic K(α), we found that making the essence of727

the situation an explicit parameter, as in is_scalar_tower, fraction_map or power_basis,728

allows to treat equivalent viewpoints uniformly without the need for transferring results.729

The formalization efforts described in this paper cannot be cleanly separated from the730

development of mathlib as a whole. The decentralized organization and highly integrated731

design of mathlib meant that we could contribute our formalizations as we completed them,732

resulting in a quick integration into the rest of the library. Other contributors building on733

these results often extended them to meet our requirements, before we could identify that734

we needed them, as the anecdote in Section 3.4 illustrates. In other words, the low barriers735

for contributions ensured mutually beneficial collaboration.736

The formalization project described in this paper resulted in the contribution of thousands737

of lines of Lean code involving hundreds of declarations. We validated existing design choices738

used in mathlib, refactored those that did not scale well and contributed our own set of designs.739

The real achievement was not to complete each proof, but to build a better foundation for740

formal mathematics.741
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