
Arithmetic and casting in Lean

Topic: Logic, Verification

Location: Vrije Universiteit Amsterdam, The Netherlands

Supervisors:
Dr. Robert Y. Lewis (r.y.lewis@vu.nl)
Dr. Jasmin Christian Blanchette (j.c.blanchette@vu.nl)

Background:
Proof assistants (also called interactive theorem provers) make it possi-
ble to develop computer-checked, formal proofs of theorems. The pri-
mary advantage of formal proofs is the extremely high trustworthiness
of the result. Proof assistants are employed for hardware and software
verification at AMD and Intel. Two recent groundbreaking applications
are a verified C compiler and a verified operating system microkernel.

Lean [1] is a disruptive proof assistant developed at Microsoft Research
and Carnegie Mellon University. Lean draws on decades of experience in
interactive and automatic theorem provers (e.g., Coq, Isabelle/HOL, and
Z3). It is based on type theory, a highly expressive logic with a very rich
dependent type system (similar to Coq’s) that can capture correctness
properties of programs (e.g., “the quicksort function returns a sorted
list”). It is implemented in C++.

Objective:
Constructing formal proofs by hand can be tedious, especially when deal-
ing with simple numeric or arithmetic facts. We often want the system to
manage such proofs for us. Another related problem involves moving be-
tween related or embedded types, for example from N to Z to Q. Many
facts are preserved when we embed terms of one type into another type,
but the embeddings can confuse automated tools and frustrate users.

Various proof assistants have tools and idioms for handling both of these
tasks. Decision procedures for linear arithmetic are well known in the
literature and can be implemented in proof-producing ways [2]. Lean
has some support for continuous (rational) arithmetic; the problem for
discrete (integer) arithmetic is harder, as is supporting quantifiers. Pro-
cesses for manipulating casts can be incorporated into simplifiers or im-
plemented independently.

The goal of this project is to adapt such tools for integer arithmetic and
casting to Lean. This can be approached from many different directions.
One is to design a simplifier loop, a tool that generalizes Lean’s simplifier
to incorporate simplifier procedures (simprocs). Both arithmetic and cast
management can be implemented in this framework. The tools can also
be approached independently, e.g. integer arithmetic can be designed as
an extension of the current rational arithmetic or in a novel way.

mailto:r.y.lewis@vu.nl
mailto:j.c.blanchette@vu.nl


Lean features a powerful metaprogramming framework that is used to
write proof-producing automation using the language of Lean itself. The
tools described here will be implemented in this language.

This internship is an ideal opportunity to familiarize oneself with proof
assistants and to get acquainted with the exciting research taking place
at the Vrije Universiteit Amsterdam. This work will likely be part of
a publication at an international conference (e.g., Certified Programs and
Proofs or Interactive Theorem Proving).

Requirements:
We expect the student to be familiar with the λ-calculus and both impera-
tive (e.g., C/C++) and functional programming (e.g., Haskell or OCaml)
and to have a basic understanding of logic. We do not expect familiarity
with a proof assistant. Knowledge of Dutch is not required.

Compensation:
In addition to any compensation offered by the intern’s home institution,
we offer e250 per month and will reimburse travel expenses to Amster-
dam.

References:

[1] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn,
and Jakob von Raumer. The Lean Theorem Prover (System Description).
CADE 2015, pp. 378–388.

[2] Frédéric Besson. Fast Reflexive Arithmetic Tactics: The Linear Case and
Beyond. TYPES 2006, pp. 48–62.

[3] Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad,
Leonardo de Moura. A Metaprogramming Framework for Formal
Verification. ICFP 2017, pp. 1–29.

2


