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Abstract

This is a report of work conducted under the supervision of Jasmin C. Blanchette and
Robert Y. Lewis, in the Matryoshka team 1 at Vrije Universiteit. It presents our contribution
to two projects of proof automation using the Lean theorem prover. The first one is norm_cast,
a tool for normalizing casts inside expressions in Lean. The second one is Polya, a heuristic
algorithm to prove non-linear inequalities.
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1 The Lean Theorem Prover

Lean is a theorem prover and programming language that implements the theory of dependent
types [5]. It’s similar to Coq, although it is more recent and still under heavy development
by Leonardo de Moura and Sebastian Ullrich 2. Lean is mainly written in C++, but the
next version should move a lot of the code base to Lean itself.

Lean’s math library, Mathlib 3, is a community driven project aimed at formalizing modern
mathematics and offering interactive tools for mathematicians to use.

In this section we try to introduce both the type theory and the syntax of Lean. Lean’s
online tutorial is a great resource for beginners [1]. Lean offers a framework for meta-
programming. It enables to run code in a virtual machine, this enable for mone efficient
code. Lean’s forthcoming revision, Lean 4, should even allow for compiling to LLVM. One
can learn more about meta-Lean in [6].

1.1 Dependent types

Lean implements depent types theory. It has a built-in hierarchy of types. Levels in the
hiearchy are called sorts and noted Sort n where n is a natural number. Type n is another
notation for Sort (n+1), and Type 0 can be shortened to Type.

Lean also implements the Curry-Howard paradigm. This means propositions are expressed
as types. Sort 0 is the universe for propositions and is also named Prop. Building a proof of
proposition p : Prop is the same as building a term of type p.

Dependent types are expressed with the Π operator: Π (a : α), f a is the type of func-
tions which take an argument a of type α and return a value of type f a, where f is a family
of types : f : Type → Type.

The arrow can be seen as a particular case of a Π type, where the body of the type doesn’t
depend on the argument: Π (a : α), β can also be written as α → β.

Arguments of a Π type can be implicit, and used for instance to define polymorphism.
In that case they are written inside curly brackets. Take for instance the definition of the
identity function:

def id : Π {α : Type}, α → α := λ {α : Type} (x : α), x

1.2 The equation compiler, the elaborator and type classes

The equation compiler is the peace of code responsible for compiling inductive declarations.
On the other hand, the elaborator is responsible for filling holes inside Lean’s expressions.
These holes are called meta-variables, and are typically introduced by implicit arguments. We
can give hints to the elaborator: by writing (e : α) we tell the elaborator that the expression
to the left of the semi-colon should have the type α.

A type class is a particular case of implicit argument. It is noted with square brackets
instead of curly brackets, and doesn’t require a name:

def plus_one {α : Type} [has_add α] [has_one α] (x : α) : α := x + 1

2https://github.com/leanprover/lean4
3https://github.com/leanprover-community/mathlib
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Type classes are also replaced by meta-variables, but are treated differently by the elab-
orator. For instance, in the above example, the elaborator will derive α from the type of x.
But to derive values of types has_add α and has_one α the elaborator will trigger a search
called type class inference.

Type classes are defined with the class operator, and instantiated with the instance oper-
ator. For instance the has_add type class, which stipulates that a particular type implements
addition, is defined as follows:

class has_add (α : Type) : Type :=
(add : α → α → α)

Similarly, the syntax for instantiation is the following:

instance nat.has_add : has_add N :=
{ add := λ x y, sorry }

sorry is a keyword that tells Lean to introduce a meta-variable ignore it. This is a way
to write incomplete proofs and declarations.

More details about the elaborator can be found in [4].

1.3 Inductive types and structures

New types can be declared in Lean with the inductive constructor. For instance let’s declare a
family of types Vector : Type → N → Type such that Vector α n is a type for lists of length
n and whose elements are of type α. This is done by defining new constructors, namely nil

and cons:

inductive Vector (α : Type) : N → Type
| nil {} : Vector 0
| cons {} {n : N} : α → Vector n → Vector (n+1)

The curly brackets just after the names of the constructors are a way of telling Lean that
α should be an implicit argument to the constructor, even if it is an explicit argument of the
family. Here is the complete type for the cons constructor:

cons : Π {α : Type} {n : N}, α → Vector α n → Vector α (n+1)}

For non-inductive types, we can use structures. For instance, let’s define a type with two
coordinates to represent points in the real plane:

structure point : Type :=
(x : R)
(y : R)

Lean’s come with a syntax to give attributes to declarations. A good example of attributes
usage is the type class system. Indeed, a class decration is actually a declaration of a structure
that is given the class attribute:

@[class] structure has_add (α : Type) : Type :=
(add : α → α → α)
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Similarly, an instance of a type class is a declaration of a value of that type, with the
instance attribute:

@[instance] def nat.has_add : has_add N :=
{ add := λ x y, sorry }

1.4 Tactics and the meta-programming framework

Writing proofs as terms becomes quickly unpractical. Like Coq, Lean enables the user to
write proofs using tactics. Tactic-style proofs can be introduced by either the by keyword or
within a begin . . . end block. They allow for interactive and automatic prooving.

Users can write tactics using the meta-programming framework of Lean. The meta keyword
enables to use datatypes that don’t have a representation in the kernel. Thus, code marked
as meta will always run in the VM, but has access to types that reflect the internals of Lean.

The type tactic, for instance, is a state monad encapsulating the state of the proof (i.e.
the context and the goals). It allows to write tactics in a monadic do-notation, very similar
to Haskell.

Another type usable in meta-Lean is the type expr, which reflects a Lean expression. It
can be used to build proof-terms, solve goals, etc.

Finally, meta-Lean also allows for more convenient programming, by enabling infinite
recursions, and use of more efficient datatypes.

2 Normalizing casts inside Lean expressions

In this section, we present a tool to handle casts inside Lean expressions.

2.1 The problem with casts

Technically, casts are just functions between two types. They are interesting because they are
used by the compiler to coerce the type of an expression when it doesn’t match the expected
type. Take for example the following declaration:

def foo (n : N) (m : Z) : Z := n + m

As we’ve seen in the declaration of the has_add type class, addition expects both arguments
to be of the same type. Thus, at first glance, this declaration shouldn’t type since n and m do
not have the same type.

Still, Lean accepts this declaration. If we ask Lean to print the definition, it returns the
following:

def foo : N → Z → Z := λ (n : N) (m : Z), ↑n + m

The up arrow symbol on the left side of the addition is a notation for the coe (as in
coercion) function. It is defined in the has_coe type class:

class has_coe (a : Sort u) (b : Sort v) :=
(coe : a → b)
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In the above example, an instance of has_coe N Z needed to be define and was used by
the elaborator to coere the left expression.

This can be a very useful feature, but it comes with some drawbacks. Because the elabo-
rator is always filling an expression from left to right, it will often put coercions deeper in the
expression than one would expect. Take for instance the following declaration:

def f (n m : N) : Z := n + m

After elaboration, this leads to the following definition:

def f : N → N → Z := λ (n m : N), ↑n + ↑m

But the user may have expected the coercion to happen “earlier” in the expression:

def f : N → N → Z := λ (n m : N), ↑(n + m)

This can lead to some frustrating situations, where “obvious” results need a lot of boiler-
plate code to be proven:

example (n m : N) : (m : Z) = n + 1 → m = n + 1 :=
begin
intro h,
rw ← int.coe_nat_one at h,
rw ← int.coe_nat_add at h,
apply int.coe_nat_inj,
exact h

end

Several people in the Lean community have been asking for a tactic automating this kind
of processes for quite some time. Some documentation was written to guide people when
facing these kinds of problems, but no work had been put into writing a general algorithm.

We asked the community for examples of statements they would like to see solved by a
tool like this, and we went from there to define a tactic that could solve these problems.

This can be done by defining a normal form of an expression in regard to casts. The
tactic we want to define, called norm_cast, would change the current goal of the proof to its
normalized form. In the above example, we could use it to close the goal more efficiently:

example {n m : N} : (m : Z) = n + 1 → m = n + 1 :=
begin
norm_cast,
exact id

end

Here, norm_cast changes the goal from ↑m = ↑n + 1 → m = n + 1 to m = n + 1 → m = n + 1.
Often, casts functions are injective and compatible with many operators. Therefore we

can move casts as high (or early) in the expression as possible using compatibility with the
operators. We can then eliminate them by injectivity when they meet an equality or an
equivalence in the expression. This is the general idea behind the norm_cast tactic.

From the beginning, the aim of norm_cast was to be a “convenience” tactic, therefore we
sat the following guidelines:

6



• it should be fast and easy to use

• it should be easily extensible by the users as they define new casts

• it should be safe to use in the middle of a proof, i.e. extending the tactic should not
break proofs that have already used it

Numerals appeared quite a lot in the examples we were given, since they require even
more lemmas to handle, they were quite tricky to implement. Indeed, numerals are not values
of a given types, but are implemented for any types that implements addition and contains
one. The way we decided to deal with them is to “force” them into the type N.

A lot of examples we were given involved numeric types, like N, Z, Q, R, C, . . ., but
the same problems can be formulated for more abstract numbers, like cardinals. The tactic
should even be able to apply on non-numeric expressions.

2.2 The solution: norm cast

It is the need for extensivity that may have guided the design of norm_cast the most. Indeed,
a very extensive and largely used tactic present in Lean is the simplifier, or simp. It goes
inductively through an expression and, at every step, it searches in a big pool of lemmas the
first one that fits to rewrite the current sub-expression. It continues until no lemma can be
used to rewrite any sub-expression. This pool of lemmas is maintained by the users with the
simp attribute.

The simplifier is one of Lean’s core tactics. Although the interactive parts are written in
meta-Lean, the core functions are links to C++ code. The primary entry point to the C++
simplifier is the following function:

meta constant ext_simplify_core
/- The user state type. -/
{α : Type}
/- Initial user data -/
(a : α)
(c : simp_config)
/- Congruence and simplification lemmas.

Remark: the simplification lemmas at not applied automatically like in the
simplify tactic.
the caller must use them at pre/post. -/

(s : simp_lemmas)
/- Tactic for dischaging hypothesis in conditional rewriting rules.

The argument ’α’ is the current user state. -/
(discharger : α → tactic α)
/- (pre a s r p e) is invoked before visiting the children of subterm ’e’,

’r’ is the simplification relation being used, ’s’ is the updated set of
lemmas if ’contextual’ is tt,
’p’ is the "parent" expression (if there is one).
if it succeeds the result is (new_a, new_e, new_pr, flag) where
- ’new_a’ is the new value for the user data
- ’new_e’ is a new expression s.t. ’e r new_e’
- ’new_pr’ is a proof for ’e r new_e’, If it is none, the proof is assumed

to be by reflexivity
- ’flag’ if tt ’new_e’ children should be visited, and ’post’ invoked. -/
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(pre : α → simp_lemmas → name → option expr → expr → tactic (α × expr ×
option expr × bool))

/- (post a s r p e) is invoked after visiting the children of subterm ’e’,
The output is similar to (pre a r s p e), but the ’flag’ indicates whether
the new expression should be revisited or not. -/

(post : α → simp_lemmas → name → option expr → expr → tactic (α × expr ×
option expr × bool))

/- simplification relation -/
(r : name) :
expr → tactic (α × expr × expr)

Here are the main arguments we are interested in:

• s, the set of lemmas to use

• pre, a function called to rewrite a sub-expression before visiting it

• post, a function called to rewrite a sub-expression after visiting it

This gives use the base structure for the norm_cast tactic: it uses the simplifier core
functions with a set of appropriate lemmas to rewrite the expression into its normal form.
These lemmas are defined using new attributes specific to norm_cast. That way, users can
add support for new lemmas by giving them an attribute, just like for the simp tactic.

It can be noted that, thanks to this approach, norm_cast benefits from the fact that the
simplifier is used intensively in Lean and lots of work has been put into making it efficient.
Relying heavily on the simplifier, although convenient, doesn’t automatically solve all our
concerns about efficiency, extensibility and safeness. For instance, if we give the move_cast

attribute to two lemmas that are both directions of the same equality, then the rewrite process
will most likely loop forever. Similarly, the normal form is determined by how the users set
the attributes.

For these reasons, we tried to define the attributes used by the tactic as clearly as possible.

• move_cast: this attribute is for lemmas that describe the behaviour of a cast function in
regard to other functions and operators. move_cast lemmas are usually of the following
shapes:

Π . . ., ↑(P a1 . . . an) = P ↑a1 . . . ↑an
Π . . ., ↑(P a1 . . . an) ↔ P ↑a1 . . . ↑an

For example:

@[move_cast] theorem coe_nat_add (m n : N) : (↑(m + n) : Z) = ↑m + ↑n

• elim_cast: this attribute is for lemmas that state the injectivity of a cast function.
elim_cast lemmas are usually of the following shapes:

Π . . ., P ↑a1 . . . ↑an = P a1 . . . an
Π . . ., P ↑a1 . . . ↑an ↔ P a1 . . . an
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For example:

@[elim_cast] theorem coe_nat_inj’ {m n : N} : (↑m : Z) = ↑n ↔ m = n

• squash_cast: this attribute is for lemmas that state the compatibility between two casts.
For instance that the composition of two cast functions is a cast function, or that the
cast of one is still one. For example:

@[squash_cast] theorem cast_coe_nat (n : N) : ((n : Z) : α) = n

The reason of the distinction between the move_cast and elim_cast attributes is that,
by convention, lemmas that we want to use to move casts are written in Mathilb in the
opposite direction that the one we want to use in norm_cast: they move casts from the top
down. Therefore we define a separate attribute with a specif pre-processing step to revert the
lemmas.

The core function of norm_cast is derive:

derive : expr → tactic (expr × expr)

It takes one Lean expression and returns two. The first output is the normalized input, and
the second is a proof term that it is equal to the input.

The derive function proceeds in 4 steps, every one being a call to the simplifier with specific
arguments:

• Step 1 is a pre-processing of numerals: it goes through the expression from the top
down and replaces sub-expressions that are numerals. This new expression is the same
numeral, but typed as a natural and then casted into the original type of the expression.

• Step 2 is where most of the rewriting happens: it goes through the expression from the
bottom up, and uses move_cast and elim_cast lemmas to rewrite sub-expressions. If a
sub-expression cannot be rewritten, it goes through the heuristic function. We will give
more details about the heuristic later, but the main idea is to “break” casts into the
composition of two.

• Step 3 is a call to the simplifier with the set of squash_cast lemmas. This is used as a
clean-up after the heuristic functions, which can creates expressions of the form ...

• Step 4 is a post-process of numerals: in the same fashion as step 1, we replace casts of
numerals with numerals.

As we mentionned, the algorithm will sometimes call a heuristic function. It is used to split
casts functions into the compositions of two, to enable the tactic to move a cast function past
an operator. For instance, given two variables (n : N) and (m : Z), let’s normalize ↑n + ↑m =

(2 : Q). We can’t rewrite it as ↑(n + m) = (2 : Q), since the types of n and m don’t match.
But we know that (n : Q) = ((n : Z) : Q), so we can rewrite it as ↑↑n + ↑↑m = (2 : Q),
then as ↑(n + ↑m) = (2 : Q) and finally as n + ↑m = (2 : Z).

The heuristic will apply to any expression that corresponds to the application of an oper-
ator to two arguments. It will check that both sides are coerced from different types. Then,
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it will try to proove from the pool of squash_cast lemmas that one of the coercion can be
expressed as the composition of the other one with a third one. If it succeeds, it will rewrite
that side of the expression and roll back to the simplifier.

2.3 Integration into Mathlib

This work resulted in a pull request on the Mathlib repository 4: alongside the main tactic it
added a set of interactive tactics that wrap the derive function with usual tactics:

• norm_cast, to normalize the goal or an expression of the context.

• exact_mod_cast, to normalize the goal and a lemma, then close the goal with the lemma.

• rw_mod_cast, the same as the rw tactic except it normalizes the goal at every step.

• assumption_mod_cast, to try exact_mod_cast on every lemma in the context

. The PR also added the norm_cast attributes to the corresponding lemmas for the usual nu-
meric types: N Z Q R C. Finally, some boiler-plate code in proofs about the p-adic numbers
was simplified using norm_cast, as an example of what could be done with the tactic.

There was a lot of feedback from the users, which resulted in a second pull request 5 that
is still pending, and should be merged shortly. Mainly, it will include:

• extended support for numerals (as we described above). The first version was simplier
but didn’t covered as many cases as the new one.

• extended documentation answering frequently asked questions

• a few bug fixes, of course

Altogether, people seem to be very happy with the tactic, and we are quite happy with
how it turned out. In our opinion it is a good example of how attributes can be used to define
user-extensible tactics in Lean, and succeeds at reducing the hassle of dealing with casts.

3 Normalizing field expressions

In this section, we present our work on a heuristic tool for solving non-linear inequalities.

3.1 The Polya algorithm

Polya is a proof-producing method to verify inqualities, originally written in Python by Robert
Y. Lewis as part of his thesis [8]. It is a clever heuristic that uses different solvers, or modules,
sharing a common data structure, the blackboard. The algorithm is targeted at reasonnably
sized non-linear inequalities, that would defeat linear solvers while being straightforward to
proove informally.

4https://github.com/leanprover-community/mathlib/pull/988
5https://github.com/leanprover-community/mathlib/pull/1103
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There is an ongoing work by Robert Y. Lewis to write Polya as a tactic in Lean 6 , but
it has been left on standby for a few years. We tried to revive it, since Mathlib still doesn’t
offer a tactic to solve similar problems.

Since the last update of the code, a new version of Lean came out and Mathlib evolved
too. Consequently, a lot of things were broken and we had to bring the code to date before
getting to work. We broke the code in independant blobs to update them one at a time. This
made debugging easier and helped us take a fresh look at the project, even if later we rolled
back to a less granular structure.

The blackboard is the heart of Polya: it is a pool of proven inequalities. These inequalities
are expressed over normalized terms and come with a proof certificate. The blackboard is
initialized with a set of hypothesis. Polya then runs a number of modules on the blackboard,
which try to derive new inequalities from the existing ones. Functionning by steps, Polya
adds the newly proven inequalities to the blackboard at the end of each step. It stops when
a couple of contradictory inequalities have been derived, or when a certain number of steps
has been exceeded. From the proof certificates of these inequalities, Polya can then build two
contradictory proof terms, and thus a proof of false. At the moment, Polya has two modules:
a multiplicative one and an additive one. More details about the internals of the algorithm
can be found in [2].

After updating the code, these are the main points to work on in Polya:

• Prove that the normalizer is correct.

• Complete the multiplicative module.

• Complete the proof-rebuilding process.

In this section we describe our work on the normalizer. We chose to rewrite it from scratch
together with a proof of correctness, rather than working around the old one. We also took
the opportunity to write it in a modular way as a normalizer of expressions in any field, rather
than confining ourselves to the reals. That way it can easily be used in different set ups, on
different types, in different tactics, etc.

We based our work on the ring tactic written for the Coq proof-assistant [7].

3.2 The normal form

Let’s begin by presenting the normal form used in Polya. It can be seen as a semi-normal
form over field expressions with rational coefficients but with the peculiarity that we ignore
the axiom of distribution (except for coefficients). A truely normal form that considers all
axioms would be similar to the Horn normal form used in [7]. This would imply unfolding
everything to a single sum, but it is key in Polya to keep an alternance between additive
forms and multiplicate forms. Unfolding terms completely would defeat the purpose of the
multiplicative module.

For instance (x + y) ∗ (x + y) is normalized to (x + y)2 rather than x2 + 2xy + y2. By
increasing the exponant we can see how unfolding the expression completely would defeat the
goal of Polya. Let have x1, x2, y1, y2 such that 0 < x1 < x2 and 0 < y1 < y2. Then we have
(x1 + y1)

n < (x2 + y2)
n. The proof for this is very simple, no matter how big n actually

6https://github.com/robertylewis/lean_polya
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is. But if we set n to 100 and unfold everything, the problem becomes extremely hard to
solve. Of course the modules are free to unfold some terms and add new inequalities to the
board, but since Polya is aimed at such non-linear problems, it shouldn’t automatically unfold
everything.

3.3 Proof by reflection

We use the same proof architecture as in [7], namely a proof by reflection. Generally, this
means that the equality between the normalized and the input expressions holds from a
property on the normalizer function. By running the normalization in the kernel, we know
that its output is equal to its input. This is to be compared with the way a tactic like the
simplifier works: it runs in the VM but it produces a proof term together with the normalized
expression. The immediate trade-off between the two methods is that either the normalization
happens in the kernel, where it is slow, and the proof term is very short (we just refer the
correctness theorem), or the normalization happens in the VM, but has to produce a longer
proof term that needs to be checked.

We want to define a normalizing function modulo some of the axioms of fields. We would
like to be able to define such a function inductively on the structure of the terms. Lean
doesn’t allow to do this on arbitary types that verify the field structure: we need to use an
intermediate representation. Therefore we introduce the term datatype. It represents the
structure of a term inside a field. It has constructors for every operation we want to reflect
from the Lean expressions. These operators are defined on every type that instantiates the
discrete_field type class. We add special constructors for variables (or atoms) and numerals.

inductive term : Type
| atom : num → term
| add : term → term → term
| sub : term → term → term
| mul : term → term → term
| div : term → term → term
| neg : term → term
| inv : term → term
| numeral : N → term
| pow_nat : term → N → term
| pow_int : term → Z → term

We also introduce an evaluation over these terms. Given a type α that verifies the axioms
of fields (defined by the discrete_field type class), and given a dictionnary to map atoms to
values of type α, we can define the following eval function:

def term.eval (ρ : dict α) : term → α
| (atom i) := ρ.val i
| (add x y) := eval x + eval y
| (sub x y) := eval x - eval y
| (mul x y) := eval x * eval y
| (div x y) := eval x / eval y
| (neg x) := - eval x

| (inv x) := (eval x)−1

| (numeral n) := (n : α)
| (pow_nat x n) := eval x ^ n
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| (pow_int x n) := eval x ^ n

Where dict α is a datatype for the dictionnary:

structure dict (α : Type) :=
(val : num → α)

Then we define some meta function that will build a term t : term together with a dic-
tionnary ρ : dict α from a Lean expression e of type α. If that function is well defined, we
can rely on the reduction in the kernel to prove e = eval ρ t by reflexivity.

We could define our normalization function on terms: norm : term → term, and proof our
main correctness theorem:

∀ (ρ : dict α) (t : term), eval ρ (norm t) = eval ρ t

But that would not be cenvenient, since a lot of the operators on fields can be defined
as combinations of others. Therefore we define a second intermediate representation, that is
going to be our main framework:

inductive nterm (γ : Type) [const_space γ] : Type
| atom : num → nterm
| const : γ → nterm
| add : nterm → nterm → nterm
| mul : nterm → nterm → nterm
| pow : nterm → znum → nterm

def nterm.eval (ρ : dict α) : nterm γ → α
| (atom i) := ρ.val i
| (const c) := ↑c
| (add x y) := eval x + eval y
| (mul x y) := eval x * eval y
| (pow x n) := eval x ^ (n : Z)

This is parametrized by a type γ that instantiates the const_space type class. The
const_space type class is just a wrapper for a field with a total order that is decidable.
γ is meant to be a representation of rationals, and thus of the coefficients inside the term.
The reason we don’t just use the Q datatype present in Mathlib is that it is very inefficient.
Since computation will happen in the kernel, and since we will make a lot of operations over
the coefficients, we want them to be represented as efficiently as possible.

Since there is no satisfying type for that purpose in Mathlib right now, we tried to be
as modular as possible, so as to integrate future work on rationals. At the moment we just
use ntermQ, since it doesn’t block computation completely on simple examples, as long as we
avoid numbers with large denominators.

We also defined a type class morph γ α that has to be instantiated to prove that γ is
compatible with α. It states that there must be a cast between γ and α, that is compatible
with the axioms of fields:

class morph (γ : Type) [discrete_field γ] (α : Type) [discrete_field α] :=
(cast : has_coe γ α)
(morph_zero : ((0 : γ) : α) = 0)
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(morph_one : ((1 : γ) : α) = 1)
(morph_add : ∀ a b : γ, ((a + b : γ) : α) = a + b)
(morph_neg : ∀ a : γ, ((-a : γ) : α) = -a)
(morph_mul : ∀ a b : γ, ((a * b : γ) : α) = a * b)

(morph_inv : ∀ a : γ, ((a−1 : γ) : α) = a−1)
(morph_inj : ∀ a : γ, (a : α) = 0 → a = 0)

The final model for terms inside a field used by our normalizer can be written as:

variables {α : Type} [discrete_field α] {ρ : dict α} --our field and
dictionnary

variables {γ : Type} [const_space γ] [morph γ α] --our coefficients

We now write a funtion from term to nterm γ together with its correctness theorem:

namespace term

def to_nterm : term → nterm γ | (atom i) := ↑i
| (add x y) := nterm.add (to_nterm x) (to_nterm y)
| (sub x y) := nterm.add (to_nterm x) (nterm.mul (nterm.const (-1)) (to_nterm
y)
| (mul x y) := nterm.mul (to_nterm x) (to_nterm y)
| (div x y) := nterm.mul (to_nterm x) (nterm.pow (to_nterm y) (-1))
| (neg x) := nterm.mul (nterm.const (-1) (to_nterm x)
| (inv x) := nterm.pow (to_nterm x) (-1)
| (numeral n) := nterm.const (n : γ)
| (pow_nat x n) := nterm.pow (to_nterm x) (n : znum)
| (pow_int x n) := nterm.pow (to_nterm x) (n : znum)

theorem correctness {x : term} :
nterm.eval ρ (@to_nterm γ _ x) = eval ρ x := ...

end term

The proof for the correctness theorem is done by induction on the input. This can be seen
as the first step in our normalizing process.

3.4 The normalizing algorithm

We will now present some of the aspects of the normalization algorithm, or how to complete
the following code:

def norm : nterm γ → nterm γ := ...
theorem correctness : ∀ (t : nterm γ), eval ρ (norm t) = eval ρ t := ...

In fact, here we need to add some complexity to our scheme of proof. Indeed, take a term
like x * x−1 where x is an atom. Since zero is not assumed to be invertible, this term can’t be
normalized to 1 without making the assumption that eval ρ x 6= 0. We want our normalizer
to cancel multiplication of inverses, so we have to keep track of the assumptions we make
along the way. In practice, we compute a list of nterm γ together with the normalized terms,
and we prove that the normalization is correct under the assumption that every term in the
list evaluates to a nonzero value. This sums up to the following declarations:
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def norm : nterm γ → nterm γ := ...
def norm_hyps : nterm γ → list (nterm γ) := ...
theorem correctness : ∀ (t : nterm γ), (∀ x ∈ norm_hyps t, eval ρ x 6= 0) →
eval ρ (norm t) = eval ρ t := ...

Internally, the norm function will switch between an additive and a multiplicative form.

def sterm (γ : Type) [const_space γ] := list (nterm γ × γ)
def pterm (γ : Type) [const_space γ] := list (nterm γ × Z)

sterm represents a sum as a list of the sum’s terms with their coefficients. Similarly, pterm
represents a product as a list of the product’s terms with their exponant. Evaluation are
defined over them as for nterm and term. We also define a function to roll back to nterm, it
has to be proven correct. The alternation between both representation is captured by the alt

type:

inductive alt (γ) [const_space γ] : bool → Type
| sform : list (nterm γ) → sterm γ → alt tt
| pform : list (nterm γ) → pterm γ → alt ff

The first argument of alt’s constructors is a list of the assumptions made. From there,
the details of the proof are a bit tedious, but the idea is to define operations on alt for
the different constructors of nterm that are proven correct in regards to evaluation. These
operations have to produce a normalized term.

For instance, let’s consider addition. Without giving details about the code, the addition of
two alt terms will begin by switching both to their sform representation, then merging them.
This includes merging both lists while keeping a lexicographical order, adding coefficients of
terms present in both lists, and finally cancelling terms whose coefficient is zero.

Finally, terms are added to the list of hypothesis in the special case where we cancel a
term inside a product form, since this term has to be assumed to evaluate to a nonzero value.

3.5 Interactive code

Let’s present a bit of the meta-code that wraps the normalizer into a tactic. As we have
seen, meta-code is mainly needed to build a term (and a dictionnary) from a Lean expression.
Meta-code is also used to produce meta-variables corresponding to the assumptions made for
the normalizer’s correctness theorem. These meta-variables are then given as new goals to
the user.

Finally, we use a nice trick to temper the lack of performance of running the normalizer in
the kernel. Since every datatype we use in the normalizer has a representation in the VM, we
can run the whole normalizer in the VM. That way, it can run very efficiently, even though
we can’t obtain any proof term for the correctness this way. But, since the normalizer will
only be used to pre-proccess hypothesis for another tactic, we don’t actually need to prove
the correctness of the normalizing step if the following tactic fails.

Shematically, if t is the term to be normalized, and nt the term obtained by normalizing
t in the VM, we create a meta-variable of type nt = norm t. That way we can use the
correctness theorem to prove eval ρ nt = eval ρ t. Once the tactic succeded, we need to
provide a term to replace that meta-variable in the final result. Since the result from the norm
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function running in the VM should be the same as in the kernel, we can rely on reduction in
the kernel to build that term, by reflexivity. This will trigger the normalization in the kernel,
but only after everything else succeded, and we know that we actually use our normalized
terms inside a proof term.

To give an example of how the normalizer can be used in a larger tactics, we wrote a field

tactic 7. It normalizes two expressions, and if the normalized expressions match, it proves the
equality between the two inputs. Using the trick mentionned above, it will only compute the
normal forms in the kernel if they already matched in the VM.

3.6 Future work

Since the normalizer was designed to run in the kernel, efficiency of the code is a major
concern. Here we present a few ideas to future improvements.

The major bottleneck in the normalizer right now is the representation of rationals. Adding
a new datatype for rationals in Mathlib directly benefit Polya, since we made it as easy as
possible to plug in a new type. We mentionned this to some users in the community, maybe
that will result in a PR for Mathlib.

It seems like the second best way to improve the tactic is to reduce the cost of switching
between the sform and pform representations. We tried to write norm as a direct induction
on the nterm datatype, but we couldn’t do it easily without using well-foundness arguments.
Here we stambled on an issue with Lean’s type system: from [3] we learn that definitional
equality is included but not equivalent to equality. This is to ensure that definitional equality
is computable. In particular, this results in well-foundness “blocking” the reduction of the
norm function in the kernel, so we couldn’t retrieve the actual normalized term.

To solve this we tried to define new intermediate types to replace nterm in a way that allows
us to write norm as a direct induction, without the use of well-foundness. More precisely, we
wanted to capture the alternance between the additive and multiplicative forms more finely
than with the alt type, using mutually inductive types instead. This is more tricky than we
thought, because of some limitations in the equation compiler when working with mutually
inductive types.

Another improvement that we are considering is to change the normal form altogether.
We could define it in a way that helps minimizing the number of operations on coefficients,
and that is simplier to express inductively on terms. Of course, we have to make sure that
the new normal form is still compatible with Polya’s modules.

7https://github.com/lean-forward/field
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