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The aim of this talk

Theorem (Strong completeness)

A system of propositional logic S is (strongly) complete if for every set of
premises Γ, any formula p that follows semantically from Γ is also
derivable from Γ. In symbols:

Γ �S p =⇒ Γ `S p

That is, every semantic consequence is also a syntactic consequence.

Proof sketch (Henkin)

The proof follows by (reverse) contraposition and it is thus
non-constructive. Simply put, we want to show that if Γ 0S p, then there
exists a model M such that M satisfies Γ but not p.

Bruno Bentzen
A Formalization of a Henkin-style Completeness Proof for Propositional Modal Logic in Lean
3 / 33



Outline
The proof: general idea

The propositional modal logic K
The mechanization of the proof

The aim of this talk

Theorem (Strong completeness)

A system of propositional logic S is (strongly) complete if for every set of
premises Γ, any formula p that follows semantically from Γ is also
derivable from Γ. In symbols:

Γ �S p =⇒ Γ `S p

That is, every semantic consequence is also a syntactic consequence.

Proof sketch (Henkin)

The proof follows by (reverse) contraposition and it is thus
non-constructive.

Simply put, we want to show that if Γ 0S p, then there
exists a model M such that M satisfies Γ but not p.

Bruno Bentzen
A Formalization of a Henkin-style Completeness Proof for Propositional Modal Logic in Lean
3 / 33



Outline
The proof: general idea

The propositional modal logic K
The mechanization of the proof

The aim of this talk

Theorem (Strong completeness)

A system of propositional logic S is (strongly) complete if for every set of
premises Γ, any formula p that follows semantically from Γ is also
derivable from Γ. In symbols:

Γ �S p =⇒ Γ `S p

That is, every semantic consequence is also a syntactic consequence.

Proof sketch (Henkin)

The proof follows by (reverse) contraposition and it is thus
non-constructive. Simply put, we want to show that if Γ 0S p, then there
exists a model M such that M satisfies Γ but not p.

Bruno Bentzen
A Formalization of a Henkin-style Completeness Proof for Propositional Modal Logic in Lean
3 / 33



Outline
The proof: general idea

The propositional modal logic K
The mechanization of the proof

The aim of this talk

Proof sketch (Henkin) [cont.]

The general method of the proof is the following:

1 Γ ∪ {¬p} is consistent, for Γ 0S p;

2 Extend Γ ∪ {¬p} to a maximal consistent set ∆ as follows:

∆0 :=Γ ∪ {¬p}

∆n+1 :=

{
∆n ∪ {ϕn+1} if ∆n ∪ {ϕn+1} is consistent

∆n ∪ {¬ϕn+1} otherwise

∆ :=
⋃
n∈N

∆n

3 Prove that ∆ is consistent, maximal and that Γ ∪ {¬p} ⊆ ∆;

4 Construct a model M s.t. JϕKM = 1 iff ϕ ∈ ∆;

5 Show that JΓKM = 1 but JpKM = 0. �

Bruno Bentzen
A Formalization of a Henkin-style Completeness Proof for Propositional Modal Logic in Lean
4 / 33



Outline
The proof: general idea

The propositional modal logic K
The mechanization of the proof

The aim of this talk

Proof sketch (Henkin) [cont.]

The general method of the proof is the following:

1 Γ ∪ {¬p} is consistent, for Γ 0S p;

2 Extend Γ ∪ {¬p} to a maximal consistent set ∆ as follows:

∆0 :=Γ ∪ {¬p}

∆n+1 :=

{
∆n ∪ {ϕn+1} if ∆n ∪ {ϕn+1} is consistent

∆n ∪ {¬ϕn+1} otherwise

∆ :=
⋃
n∈N

∆n

3 Prove that ∆ is consistent, maximal and that Γ ∪ {¬p} ⊆ ∆;

4 Construct a model M s.t. JϕKM = 1 iff ϕ ∈ ∆;

5 Show that JΓKM = 1 but JpKM = 0. �

Bruno Bentzen
A Formalization of a Henkin-style Completeness Proof for Propositional Modal Logic in Lean
4 / 33



Outline
The proof: general idea

The propositional modal logic K
The mechanization of the proof

The aim of this talk

Proof sketch (Henkin) [cont.]

The general method of the proof is the following:

1 Γ ∪ {¬p} is consistent, for Γ 0S p;

2 Extend Γ ∪ {¬p} to a maximal consistent set ∆ as follows:

∆0 :=Γ ∪ {¬p}

∆n+1 :=

{
∆n ∪ {ϕn+1} if ∆n ∪ {ϕn+1} is consistent

∆n ∪ {¬ϕn+1} otherwise

∆ :=
⋃
n∈N

∆n

3 Prove that ∆ is consistent, maximal and that Γ ∪ {¬p} ⊆ ∆;

4 Construct a model M s.t. JϕKM = 1 iff ϕ ∈ ∆;

5 Show that JΓKM = 1 but JpKM = 0. �

Bruno Bentzen
A Formalization of a Henkin-style Completeness Proof for Propositional Modal Logic in Lean
4 / 33



Outline
The proof: general idea

The propositional modal logic K
The mechanization of the proof

The aim of this talk

Proof sketch (Henkin) [cont.]

The general method of the proof is the following:

1 Γ ∪ {¬p} is consistent, for Γ 0S p;

2 Extend Γ ∪ {¬p} to a maximal consistent set ∆ as follows:

∆0 :=Γ ∪ {¬p}

∆n+1 :=

{
∆n ∪ {ϕn+1} if ∆n ∪ {ϕn+1} is consistent

∆n ∪ {¬ϕn+1} otherwise

∆ :=
⋃
n∈N

∆n

3 Prove that ∆ is consistent, maximal and that Γ ∪ {¬p} ⊆ ∆;

4 Construct a model M s.t. JϕKM = 1 iff ϕ ∈ ∆;

5 Show that JΓKM = 1 but JpKM = 0. �

Bruno Bentzen
A Formalization of a Henkin-style Completeness Proof for Propositional Modal Logic in Lean
4 / 33



Outline
The proof: general idea

The propositional modal logic K
The mechanization of the proof

The aim of this talk

Proof sketch (Henkin) [cont.]

The general method of the proof is the following:

1 Γ ∪ {¬p} is consistent, for Γ 0S p;

2 Extend Γ ∪ {¬p} to a maximal consistent set ∆ as follows:

∆0 :=Γ ∪ {¬p}

∆n+1 :=

{
∆n ∪ {ϕn+1} if ∆n ∪ {ϕn+1} is consistent

∆n ∪ {¬ϕn+1} otherwise

∆ :=
⋃
n∈N

∆n

3 Prove that ∆ is consistent, maximal and that Γ ∪ {¬p} ⊆ ∆;

4 Construct a model M s.t. JϕKM = 1 iff ϕ ∈ ∆;

5 Show that JΓKM = 1 but JpKM = 0. �
Bruno Bentzen

A Formalization of a Henkin-style Completeness Proof for Propositional Modal Logic in Lean
4 / 33



Outline
The proof: general idea

The propositional modal logic K
The mechanization of the proof

The aim of this talk

What do we need for a formalization of a Henkin-style completeness proof?

The structure of the implementation

The mechanization of the proof requires four basic implementations:

The set of well-formed formulas of S ;

The contexts of S ;

The proof system of S ;

The class of models of S ;

Remark

Implicit in the previous proof sketch are the assumptions that

S has a (not necessarily primitive) logical connective for negation;

S has an enumerable language.

S is a classical (as opposed to constructive) logic.
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The aim of this talk

In this talk we present a formalization of a Henkin-style completeness
proof for the propositional modal logic K using the Lean Theorem Prover.

The full source code is available at:

https://github.com/bbentzen/metalogic/
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The proof system
Semantics

1 The proof system of K. We shall work in a Hilbert-style system:
1 Axioms.

(pl1) Γ `k p ⊃ (q ⊃ p);
(pl2) Γ `k (p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r));
(pl3) Γ `k ((¬p) ⊃ ¬q) ⊃ (((¬p) ⊃ q) ⊃ p);

(k) Γ `k (p ⊃ q) ⊃ (�p ⊃ �q).

2 Rules of inference.

(ax)
p ∈ Γ

Γ `k p
(mp)

Γ `k p ⊃ q Γ `k p

Γ `k q

(nec)
`k p

Γ `k �p
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The proof system
Semantics

1 The semantics of K. The semantics for our modal logic will be given
using Kripke semantics.

A Kripke model is a triple 〈W,R, v〉 where

W is a set of objects called possible worlds;
R is a binary relation on possible worlds;
v specifies the truth value of a formula at a world.

We define the truth of a formula at a world in a model recursively:

(var) w � p if v(p,w) = 1;
(⊥) w 2 ⊥;
(⊃) w � p → q if w 2 p or w � p;
(�) if for every world v ∈ W, R(w , v) implies v � p
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1 Well-formed formulas

We define an inductive type form for well-formed formulas.

inductive form {σ :nat} : Type

| atom : var σ → form

| bot : form

| impl : form → form → form

| box : form → form

Some useful notation:

notation ‘#‘ := form.atom

notation ‘⊥‘ := form.bot _

notation ‘∼‘ p := (form.impl p (form.bot _))

notation p ‘⊃‘ q := (form.impl p q)

notation ‘�‘ p := (form.box p)

notation ‘�‘ p := (∼ (� (∼ p)))

Bruno Bentzen
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2 Contexts

We define contexts as sets of formulas, i.e., set (form σ).

@[reducible] def ctx : Type := set (form σ)

notation ‘·‘ := {}

notation Γ ‘̀ ‘ p := set.insert p Γ
notation Γ ‘t‘ ∆ := set.union Γ ∆

Sets are predicates in Lean (set α := α→ Prop).
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3 The proof system

We define an inductive type prf that represents k-provability.

i n d u c t i v e p r f : c t x σ → form σ → Prop
| ax {Γ : c t x σ} {p : form σ} ( h : p ∈ Γ) : p r f Γ p
| p l 1 {Γ : c t x σ} {p q : form σ} : p r f Γ ( p ⊃ ( q ⊃ p ) )
| p l 2 {Γ : c t x σ} {p q r : form σ} : p r f Γ ( ( p ⊃ ( q ⊃ r ) ) ⊃ ( ( p ⊃ q ) ⊃ ( p ⊃ r ) ) )
| p l 3 {Γ : c t x σ} {p q : form σ} : p r f Γ ( ( (∼p ) ⊃ ∼q ) ⊃ ( ( (∼p ) ⊃ q ) ⊃ p ) )
| mp {Γ : c t x σ} {p q : form σ} ( hpq : p r f Γ ( p ⊃ q ) ) ( hp : p r f Γ p ) : p r f Γ q
| k {Γ : c t x σ} {p q : form σ} : p r f Γ ( (�( p ⊃ q ) ) ⊃ ( (�p ) ⊃ (�q ) ) )
| nec {Γ : c t x σ} {p : form σ} ( h : p r f · p ) : p r f Γ (�p )

n o t a t i o n Γ ‘`k ‘ p := p r f Γ p
n o t a t i o n Γ ‘0k ‘ p := p r f Γ p → f a l s e

Bruno Bentzen
A Formalization of a Henkin-style Completeness Proof for Propositional Modal Logic in Lean
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4 Semantics

We implement Kripke models as structures: triples given by a domain
wrlds, an accessibility relation access, and a valuation function val.

@ [ r e d u c i b l e ] d e f w r l d (σ : nat ) : Type := s e t ( form σ )

v a r i a b l e {σ : nat}

s t r u c t u r e model := ( w r l d s : s e t ( w r l d σ ) )
( a c c e s s : w r l d σ → w r l d σ → b o o l )
( v a l : v a r σ → w r l d σ → b o o l )

The truth-at-a-world relation is a function form σ → wrld → bool

indexed by a model. It can be defined as follows:
noncomputable d e f f o r m t t i n w r l d (M : model ) : form σ → w r l d σ → b o o l
| (#p ) := λ w, M. v a l p w
| ⊥ := λ w, f f
| ( p ⊃ q ) :=λ w, ( bnot ( f o r m t t i n w r l d p w) ) | | ( f o r m t t i n w r l d q w)
| (�p ) := λ w,
i f

(∀ v ∈ M. w r l d s , w ∈ M. w r l d s → M. a c c e s s w v = t t → f o r m t t i n w r l d p v = t t )
then

t t
e l s e

f f
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4 Semantics

A model satisfies a formula if it is true at all possible worlds.

n o t a t i o n M ‘[[ ‘ p ‘ ]] ‘ w := f o r m t t i n w r l d M p w

i n d u c t i v e s t s f (M : model ) ( p : form σ ) : Prop
| i s t r u e (m : Π w, (M [ [ p ] ] w) = t t ) : s t s f

n o t a t i o n M ‘�k ‘ p := s t s f M p

A model satisfies a context if it satisfies each formula individually.

l o c a l a t t r i b u t e [ i n s t a n c e ] c l a s s i c a l . p r o p d e c i d a b l e

noncomputable d e f c t x t t i n w r l d (M : model ) (→ : c t x σ ) : w r l d σ → b o o l :=
assume w, i f (∀ p , p ∈ Γ → f o r m t t i n w r l d M p w = t t ) then t t e l s e f f

n o t a t i o n M ‘ [ [ ‘Γ ‘ ] ] ‘ w := c t x t t i n w r l d M Γ w

i n d u c t i v e sem csq (Γ : c t x σ ) ( p : form σ ) : Prop
| i s t r u e (m : Π (M : model ) (w : w r l d σ ) , ( (M [ [ Γ ] ] w) = t t ) → (M [ [ p ] ] w) = t t ) : sem csq

n o t a t i o n Γ ‘�k ‘ p := sem csq Γ p
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Proof sketch (Henkin)

Recall the proof’s strategy:

1 Show that if Γ 0S p, then Γ ∪ {¬p} is consistent;

2 Extend Γ ∪ {¬p} to a maximal consistent set ∆:

∆0 :=Γ ∪ {¬p}

∆n+1 :=

{
∆n ∪ {ϕn+1} if ∆n ∪ {ϕn+1} is consistent

∆n ∪ {¬ϕn+1} otherwise

∆ :=
⋃
n∈N

∆n

3 Prove that ∆ is consistent, maximal and that Γ ∪ {¬p} ⊆ ∆;

4 Construct a model M s.t. JϕKM = 1 iff ϕ ∈ ∆;

5 Show that JΓKM = 1 but JpKM = 0. �
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1 Consistency

Consistency is defined as usual

d e f i s c o n s i s t (Γ : c t x σ ) : Prop := Γ 0k ⊥

d e f n o t p r v b t o n e g c o n s i s t {Γ : c t x σ} {p : form σ} :
(Γ 0k p ) → i s c o n s i s t (Γ ` ∼ p ) :=
λ hnp hc , hnp ( p r f . mp p r f . dne ( p r f . d e d u c t i o n hc ) )
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2 Maximal consistent extensions

First we define a function ctx σ → nat → ctx σ.

It takes contexts and
codes of formulas as arguments, and then performs consistently-wise
decisions that either include that formula or its negation to context.

d e f e x t c t x w i t h f o r m (Γ : c t x σ ) : nat → c t x σ :=
λ n , o p t i o n . r e c o n ( e n c o d a b l e . decode ( form σ ) n ) Γ

(λ p , d e c i d a b l e . r e c o n ( p r o p d e c i d a b l e ( i s c o n s i s t (Γ ` p ) ) )
(λ hn , Γ ` ∼p )
(λ h , Γ ` p )

)

Note: our language is enumerable.

i n s t a n c e o f f o r m : e n c o d a b l e ( form σ ) :=
〈 e n c od e f o rm , de c o d e f o rm σ , enc odek fo rm 〉
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2 Maximal consistent extensions

Next, we apply ext ctx with form to all formulas

d e f e x t c t x t o m a x s e t a t (Γ : c t x σ ) : nat → c t x σ :=
| 0 := e x t c t x w i t h f o r m Γ 0
| ( n+1) := e x t c t x w i t h f o r m ( e x t c t x t o m a x s e t a t n ) ( n+1)

thus obtaining a maximal set:

d e f e x t c t x t o m a x s e t (Γ : c t x σ ) : c t x σ :=⋃
0 ( image (λ n , e x t c t x t o m a x s e t a t Γ n ) {n | t r u e })
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3 Maximal consistent extensions are well-behaved

Γ is a subset of its maximal extension, ext ctx to max set Γ.

d e f c t x i s s u b c t x o f m a x e x t {Γ : c t x σ} :
Γ ⊆ e x t c t x t o m a x s e t Γ :=
b e g i n

i n t r o s , a p p l y e x t c t x a t i s s u b m a x s e t ,
a p p l y c t x i s s u b e x t c t x a t , r e p e a t { a ss um pt io n }

end
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3 Maximal consistent extensions are well-behaved

This extension ext ctx to max set Γ is indeed maximal.

d e f e x t c t x w i t h f o r m o f i t s c o d e {Γ : c t x σ} {p : form σ} :
( p ∈ e x t c t x w i t h f o r m Γ ( e n c o d a b l e . encode p ) )
∨
( (∼ p ) ∈ e x t c t x w i t h f o r m Γ ( e n c o d a b l e . encode p ) ) :=
b e g i n

u n f o l d e x t c t x w i t h f o r m ,
rw ( e n c o d a b l e . encodek p ) ,

simp , i n d u c t i o n ( p r o p d e c i d a b l e ) ,
simp , r i g h t , a p p l y t r i v i a l m e m l e f t ,
simp , l e f t , a p p l y t r i v i a l m e m l e f t

end
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3 Maximal consistent extensions are well-behaved

d e f e x t c t x i s m a x {Γ : c t x σ} ( p : form σ ) :
( p ∈ e x t c t x t o m a x s e t Γ) ∨ ( (∼p ) ∈ e x t c t x t o m a x s e t Γ) :=
b e g i n

c a s e s e x t c t x w i t h f o r m o f i t s c o d e ,
l e f t ,

a p p l y e x t c t x a t i s s u b m a x s e t ,
a p p l y e x t c t x f o r m i s s u b e x t c t x a t ,
a p p l y n o c o d e i s z e r o p , assumpt ion ,

r i g h t ,
a p p l y e x t c t x a t i s s u b m a x s e t ,
a p p l y e x t c t x f o r m i s s u b e x t c t x a t ,
a p p l y n o c o d e i s z e r o p , assumpt ion ,

end
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3 Maximal consistent extensions are well-behaved

Maximal consistent extensions preserve consistency

d e f m a x e x t p r e s e r v e s c o n s i s t {Γ : c t x σ} :
i s c o n s i s t Γ → i s c o n s i s t ( e x t c t x t o m a x s e t Γ) :=
by i n t r o s hc nc ; c a s e s e x t c t x l v l nc ;

a p p l y c t x c o n s i s t e x t c t x a t c o n s i s t ; r e p e a t { a ss um pt io n }

This implies that maximal consistent sets are closed under derivability.

d e f m a x s e t c l s d d e r i v {Γ : c t x σ} {p : form σ} ( hc : i s c o n s i s t Γ) :
( e x t c t x t o m a x s e t Γ `k p ) → p ∈ e x t c t x t o m a x s e t Γ :=
b e g i n

i n t r o h ,
c a s e s e x t c t x i s m a x p ,

assumpt ion ,
a p p l y f a l s e . rec ,

a p p l y m a x e x t p r e s e r v e s c o n s i s t , assumpt ion ,
a p p l y p r f . mp, a p p l y p r f . ax , assumpt ion , as s um pt io n

end
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4 The canonical model

The set of all possible worlds W is the set of all maximal consistent sets.

d e f s e t m a x w r l d s (σ : nat ) : s e t ( w r l d σ ) :=
image (λ w, e x t c t x t o m a x s e t w) {w | i s c o n s i s t w }
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4 The canonical model

The accessibility relation R is given via the ‘unbox’ operation

d e f u n b o x f o r m i n w r l d (w : w r l d σ ) : nat → w r l d σ :=
λ n , o p t i o n . r e c o n ( e n c o d a b l e . decode ( form σ ) n ) ·
(λ p , form . r e c o n p

(λ v , ·) · (λ q r , ·)
(λ q , i f (�q ) ∈ w then {q} e l s e · )

)

d e f u n b o x w r l d (w : w r l d σ ) : w r l d σ :=⋃
0 ( image (λ n , u n b o x f o r m i n w r l d w n ) {n | t r u e })

noncomputable d e f w r l d s t o a c c e s s : w r l d σ → w r l d σ → b o o l :=
assume w v , i f ( u n b o x w r l d w ⊇ v ) then t t e l s e f f
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4 The canonical model

In particular,
d e f i n u n b o x b o x i n w r l d {p : form σ} {w : w r l d σ} :
p ∈ u n b o x w r l d w ↔ (�p ) ∈ w :=
b e g i n

a p p l y i f f . i n t r o ,
i n t r o h , c a s e s h , c a s e s h h ,

c a s e s h h w , c a s e s h h w h , c a s e s h h w h r i g h t ,
r e v e r t h h h , i n d u c t i o n ( e n c o d a b l e . decode ( form σ ) ) ,

simp , i n t r o , a p p l y f a l s e . rec , assumpt ion ,
simp , i n d u c t i o n v a l ,

r e p e a t {simp , i n t r o h , a p p l y f a l s e . rec , as s um pt io n } ,
simp , u n f o l d i t e , i n d u c t i o n ( p r o p d e c i d a b l e ) ,

simp , i n t r o , a p p l y f a l s e . rec , assumpt ion ,
simp , i n t r o h , c a s e s h , assumpt ion ,

i n t r o h , u n f o l d u n b o x w r l d image sUnion ,
c o n s t r u c t o r , c o n s t r u c t o r , c o n s t r u c t o r , c o n s t r u c t o r ,

t r i v i a l , r e f l e x i v i t y ,
e x a c t e n c o d a b l e . encode (�p ) ,
u n f o l d u n b o x f o r m i n w r l d i t e ,

rw ( e n c o d a b l e . encodek �p ) ,
simp , i n d u c t i o n p ,

r e p e a t {
i n d u c t i o n p r o p d e c i d a b l e ,
c o n t r a d i c t i o n , simp ,

}
end
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4 The canonical model

Useful corollaries are:
d e f n o t b o x i n w r l d u n b o x n o t p r v b l e {p : form σ} {w : w r l d σ} (hw : w ∈ s e t m a x w r l d s σ ) :
(∼ �p ) ∈ w → ( u n b o x w r l d w 0k p ) :=
b e g i n

i n t r o s h nhp ,
a p p l y a l l w r l d s a r e c o n s i s t hw ,

a p p l y p r f . mp,
a p p l y p r f . ax h ,
a p p l y p r f . ax ( u n b o x p r v b l e b o x i n w r l d hw nhp )

end

d e f n o t b o x i n w r l d t o c o n s i s t n o t {p : form σ} {w : w r l d σ} (hw : w ∈ s e t m a x w r l d s σ ) :
(∼ �p ) ∈ w → i s c o n s i s t ( u n b o x w r l d w

`
(∼p ) ) :=

λ hn , n o t p r v b t o n e g c o n s i s t ( n o t b o x i n w r l d u n b o x n o t p r v b l e hw hn )
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4 The canonical model

The valuation function v can be defined as follows:

noncomputable d e f w r l d s t o v a l : v a r σ → w r l d σ → b o o l :=
assume p w, i f w ∈ s e t m a x w r l d s σ ∧ (#p ) ∈ w then t t e l s e f f

By putting all the pieces together we have:

noncomputable d e f c a n o n i c a l m o d e l : @model σ :=
b e g i n

a p p l y model . mk ,
a p p l y s e t m a x w r l d s ,
a p p l y w r l d s t o a c c e s s ,
a p p l y w r l d s t o v a l

end
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4 The canonical model

Now we show that truth is membership in the canonical model
d e f t t i f f i n w r l d {p : form σ} :
∀ (w : w r l d σ ) (wm : w ∈ s e t m a x w r l d s σ ) , ( c a n o n i c a l m o d e l [ [ p ] ] w) = t t ↔ p ∈ w :=
b e g i n

i n d u c t i o n p ,
s o r r y , s o r r y , s o r r y , /−− we w i l l not d i s c u s s t h e atom , bot , and i m p l c a s e s −−/

u n f o l d f o r m t t i n w r l d , simp , i n t r o s , −− box
a p p l y i f f . i n t r o ,

i n t r o h , c a s e s a l l w r l d s a r e m a x wm �p a , assumpt ion ,
a p p l y f a l s e . rec , a p p l y m a x e x t p r e s e r v e s c o n s i s t ,

a p p l y n o t b o x i n w r l d t o c o n s i s t n o t wm h 1 ,
a p p l y p r f . mp, a p p l y p r f . ax ,

a p p l y c t x i s s u b c t x o f m a x e x t , e x a c t t r i v i a l m e m l e f t ,
a p p l y p r f . ax , a p p l y ( p i h ( m a x c o n s s e t i n a l l w r l d s

( n o t b o x i n w r l d t o c o n s i s t n o t wm h 1 ) ) ) . 1 ,
a p p l y h , assumpt ion ,

e x a c t m a x c o n s s e t i n a l l w r l d s
( n o t b o x i n w r l d t o c o n s i s t n o t wm h 1 ) ,

u n f o l d c a n o n i c a l m o d e l w r l d s t o a c c e s s , simp ,
i n t r o s p pm, a p p l y c t x i s s u b c t x o f m a x e x t ,

a p p l y m e m e x t c o n s l e f t , assumpt ion ,
i n t r o s h v , u n f o l d c a n o n i c a l m o d e l w r l d s t o a c c e s s ,

simp , i n t r o s ww vw rwv , a p p l y ( p i h vw ) . 2 ,
a p p l y rwv , a p p l y i n u n b o x b o x i n w r l d . 2 , as su mp t io n

end
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4 The canonical model

Informally we have:

(IH) (canonical model[[p]]w) = tt ↔ p ∈ w

→ Assume that (canonical model[[�p]]w) = tt and that ∼ �p ∈ w .
But then unbox wrld w

`
(∼ p) is consistent and can be extended to a

possible world. It is accessible to w because unbox wrld

w ⊆ ext ctx to max set(unbox wrld w , (∼ p)), so p should be true
at w . But p /∈ ext ctx to max set(unbox wrld w , (∼ p)) because it
is consistent.

← Assume that �p ∈ w . Given v ∈ M.wrld and M.access w v = tt, we
have to show that (canonical model[[p]]v) = tt. By our IH, it
suffices to show that p ∈ v , but unbox wrld w ⊆ v and �p ∈ w .
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6 The completeness proof

We complete the proof by showing that the canonical model falsifies p at
the possible world ext ctx to max set (Γ,∼ p)
d e f c t x i s t t (Γ : c t x σ ) (wm : Γ ∈ s e t m a x w r l d s σ ) :
( c a n o n i c a l m o d e l [ [ Γ ] ] Γ) = t t :=
m e m t t t o c t x t t Γ (λ p pm, ( t t i f f i n w r l d wm) . 2 pm)

d e f c m p l t n s s {Γ : c t x σ} {p : form σ} :
(Γ �k p ) → (Γ `k p ) :=
b e g i n

a p p l y n o t c o n t r a p , i n t r o s nhp hp , c a s e s hp ,
have c : i s c o n s i s t ( Γ̀ ∼ p ) := n o t p r v b t o n e g c o n s i s t nhp ,

a p p l y absurd ,
a p p l y hp ,

a p p l y c o n s c t x t t t o c t x t t ,
a p p l y c t x t t t o s u b c t x t t ,

a p p l y c t x i s t t ( e x t c t x t o m a x s e t ( Γ̀ ∼ p ) ) ,

a p p l y m a x c o n s s e t i n a l l w r l d s c ,
a p p l y c t x i s s u b c t x o f m a x e x t ,

simp , a p p l y n e g t t i f f f f . 1 , a p p l y and . e l i m r i g h t , a p p l y c o n s c t x t t i f f a n d . 1 ,
a p p l y c t x t t t o s u b c t x t t ,

a p p l y c t x i s t t ( e x t c t x t o m a x s e t ( Γ̀ ∼ p ) ) ,

a p p l y m a x c o n s s e t i n a l l w r l d s c ,
a p p l y c t x i s s u b c t x o f m a x e x t ,

end
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Thank you!
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