A Formalization of a Henkin-style Completeness Proof
for Propositional Modal Logic in Lean

Bruno Bentzen

Department of Philosophy
Carnegie Mellon University

January 7, 2019

Bruno Bentzen 1/33

@ The proof: general idea
@ The aim of this talk

@ The propositional modal logic K
@ The proof system
@ Semantics

© The mechanization of the proof
@ Some basic implementations
@ The completeness proof

Bruno Bentzen 2/33

The proof: general idea The aim of this talk

Theorem (Strong completeness)

A system of propositional logic S is (strongly) complete if for every set of
premises I, any formula p that follows semantically from I is also
derivable from I'. In symbols:

r'zsp:>r|—5p

That is, every semantic consequence is also a syntactic consequence.

Bruno Bentzen 3/33

The proof: general idea

The aim of this talk

Theorem (Strong completeness)

A system of propositional logic S is (strongly) complete if for every set of
premises I, any formula p that follows semantically from I is also
derivable from I'. In symbols:

r'zsp:>r|—5p

That is, every semantic consequence is also a syntactic consequence.

Proof sketch (Henkin)

The proof follows by (reverse) contraposition and it is thus
non-constructive.

Bruno Bentzen 3/33

The proof: general idea

The aim of this talk

Theorem (Strong completeness)

A system of propositional logic S is (strongly) complete if for every set of
premises I, any formula p that follows semantically from I is also
derivable from I'. In symbols:

r'zsp:>r|—5p

That is, every semantic consequence is also a syntactic consequence.

Proof sketch (Henkin)

The proof follows by (reverse) contraposition and it is thus
non-constructive. Simply put, we want to show that if [s p, then there
exists a model M such that M satisfies [but not p.

Bruno Bentzen 3/33

The proof: general idea The aim of this talk

Proof sketch (Henkin) [cont.]

The general method of the proof is the following:
© U {-p} is consistent, for [¥s p;

@ Extend I' U {—p} to a maximal consistent set A as follows:

Bruno Bentzen 4/33

The proof: general idea The aim of this talk

Proof sketch (Henkin) [cont.]

The general method of the proof is the following:
© U {-p} is consistent, for [¥s p;

@ Extend I' U {—p} to a maximal consistent set A as follows:

A :=T'U{-p}

A AU {¢n+1} if A, U {pnt1} is consistent
L A, U{~pni1} otherwise

A::UA,,

neN

Bruno Bentzen 4/33

The proof: general idea The aim of this talk

Proof sketch (Henkin) [cont.]

The general method of the proof is the following:
© U {-p} is consistent, for [¥s p;

@ Extend I' U {—p} to a maximal consistent set A as follows:

A :=T'U{-p}

A AU {¢n+1} if A, U {pnt1} is consistent
L A, U{~ppi1} otherwise

A::UA,,

neN

© Prove that A is consistent, maximal and that ' U {—p} C A;

Bruno Bentzen 4/33

The proof: general idea The aim of this talk

Proof sketch (Henkin) [cont.]

The general method of the proof is the following:
© U {-p} is consistent, for [¥s p;

@ Extend I' U {—p} to a maximal consistent set A as follows:

A :=T'U{-p}

A AU {¢n+1} if A, U {pnt1} is consistent
L A, U{~ppi1} otherwise

A::UA,,

neN

© Prove that A is consistent, maximal and that ' U {—p} C A;
© Construct a model M s.t. [p]m =1iff p € A;

Bruno Bentzen 4/33

The proof: general idea The aim of this talk

Proof sketch (Henkin) [cont.]

The general method of the proof is the following:
© U {-p} is consistent, for [¥s p;

@ Extend I' U {—p} to a maximal consistent set A as follows:

A :=T'U{-p}
A AU {on+1} if AyU{pnt1} is consistent
L A, U{~ppi1} otherwise

A::UA,,

neN

© Prove that A is consistent, maximal and that ' U {—p} C A;
© Construct a model M s.t. [p]m =1iff p € A;
@ Show that [Ia =1 but [p]ar = 0.

Bruno Bentzen 4/33

The proof: general idea

The aim of this talk

What do we need for a formalization of a Henkin-style completeness proof?

Bruno Bentzen 5/33

The proof: general idea

The aim of this talk

What do we need for a formalization of a Henkin-style completeness proof?

The structure of the implementation

The mechanization of the proof requires four basic implementations:

@ The set of well-formed formulas of S;

Bruno Bentzen 5/33

The proof: general idea

The aim of this talk

What do we need for a formalization of a Henkin-style completeness proof?

The structure of the implementation

The mechanization of the proof requires four basic implementations:
@ The set of well-formed formulas of S;

@ The contexts of S;

Bruno Bentzen 5/33

The proof: general idea The aim of this talk

What do we need for a formalization of a Henkin-style completeness proof?

The structure of the implementation
The mechanization of the proof requires four basic implementations:

@ The set of well-formed formulas of S;
@ The contexts of S;
@ The proof system of S;

Bruno Bentzen 5/33

The proof: general idea

The aim of this talk

What do we need for a formalization of a Henkin-style completeness proof?

The structure of the implementation
The mechanization of the proof requires four basic implementations:

@ The set of well-formed formulas of S;
@ The contexts of S;
@ The proof system of S;

@ The class of models of S;

Bruno Bentzen 5/33

The proof: general idea

The aim of this talk

What do we need for a formalization of a Henkin-style completeness proof?

The structure of the implementation
The mechanization of the proof requires four basic implementations:

@ The set of well-formed formulas of S;
@ The contexts of S;
@ The proof system of S;

@ The class of models of S;

Bruno Bentzen 5/33

The proof: general idea The aim of this talk

What do we need for a formalization of a Henkin-style completeness proof?

The structure of the implementation

The mechanization of the proof requires four basic implementations:

@ The set of well-formed formulas of S;
@ The contexts of S;
@ The proof system of S;

@ The class of models of S;

Implicit in the previous proof sketch are the assumptions that

@ S has a (not necessarily primitive) logical connective for negation;

Bruno Bentzen 5/33

The proof: general idea The aim of this talk

What do we need for a formalization of a Henkin-style completeness proof?

The structure of the implementation

The mechanization of the proof requires four basic implementations:

@ The set of well-formed formulas of S;
@ The contexts of S;
@ The proof system of S;

@ The class of models of S;

Implicit in the previous proof sketch are the assumptions that

@ S has a (not necessarily primitive) logical connective for negation;

@ S has an enumerable language.

Bruno Bentzen 5/33

The proof: general idea The aim of this talk

What do we need for a formalization of a Henkin-style completeness proof?

The structure of the implementation

The mechanization of the proof requires four basic implementations:

@ The set of well-formed formulas of S;
@ The contexts of S;
@ The proof system of S;

@ The class of models of S;

Implicit in the previous proof sketch are the assumptions that

@ S has a (not necessarily primitive) logical connective for negation;

@ S has an enumerable language.

@ S is a classical (as opposed to constructive) logic.

Bruno Bentzen 5/33

The proof: general idea The aim of this talk

What do we need for a formalization of a Henkin-style completeness proof?

The structure of the implementation

The mechanization of the proof requires four basic implementations:

@ The set of well-formed formulas of S;
@ The contexts of S;
@ The proof system of S;

@ The class of models of S;

Implicit in the previous proof sketch are the assumptions that

@ S has a (not necessarily primitive) logical connective for negation;

@ S has an enumerable language.

@ S is a classical (as opposed to constructive) logic.

Bruno Bentzen 5/33

The proof: general idea

The aim of this talk

In this talk we present a formalization of a Henkin-style completeness
proof for the propositional modal logic K using the Lean Theorem Prover.

Bruno Bentzen 6/33

https://github.com/bbentzen/metalogic/

The proof: general idea

The aim of this talk

In this talk we present a formalization of a Henkin-style completeness
proof for the propositional modal logic K using the Lean Theorem Prover.
The full source code is available at:

https://github.com/bbentzen/metalogic/

Bruno Bentzen 6/33

https://github.com/bbentzen/metalogic/

The proof system

The propositional modal logic K Semantics

@ The propositional modal logic K

Bruno Bentzen 7/33

The proof system

The propositional modal logic K Semantics

@ The proof system of K. We shall work in a Hilbert-style system:
@ Axioms.
(pI1) THepD (gD p);
(pI2) THe (P2 (gDr))D((PDg)D(PDr))

(pI3) T Fi ((=p) 2 =) D (((=p) 2 q) D p);
(k) TH«(p2q) D (0p>Og).

Bruno Bentzen 8/33

The proof system

The propositional modal logic K Semantics

@ The proof system of K. We shall work in a Hilbert-style system:
@ Axioms.
(pI1) THepD (gD p);
(pI2) THe (P2 (gDr))D((PDg)D(PDr))

(pI3) T Fi ((=p) 2 =) D (((=p) 2 q) D p);
(k) TH«(p2q) D (0p>Og).

® Rules of inference.

pel FFepDg Thep
Fep
nec) ————
()Fl—kDp

Bruno Bentzen 8/33

The proof system

The propositional modal logic K Semantics

@ The semantics of K. The semantics for our modal logic will be given
using Kripke semantics.

Bruno Bentzen 9/33

The proof system

The propositional modal logic K Semantics

@ The semantics of K. The semantics for our modal logic will be given
using Kripke semantics. A Kripke model is a triple (W, R, v) where
e W is a set of objects called possible worlds;
e R is a binary relation on possible worlds;
e v specifies the truth value of a formula at a world.

Bruno Bentzen 9/33

The proof system

The propositional modal logic K Semantics

@ The semantics of K. The semantics for our modal logic will be given
using Kripke semantics. A Kripke model is a triple (W, R, v) where
e W is a set of objects called possible worlds;
e R is a binary relation on possible worlds;
e v specifies the truth value of a formula at a world.

We define the truth of a formula at a world in a model recursively:
(var) wE pif v(p,w) =1;

(L) wk 1,

(D) wEp—gqifwEporwEp;

(O0) if for every world v € W, R(w, v) implies v F p

Bruno Bentzen 9/33

Some basic implementations
The completeness proof

The mechanization of the proof

© The mechanization of the proof

Bruno Bentzen 10/33

Some basic implementations

The completeness proof
The mechanization of the proof

© Well-formed formulas

We define an inductive type form for well-formed formulas.

inductive form {o :nat} : Type
atom : var o — form

| bot : form

| impl : form — form — form

| box : form — form

Bruno Bentzen 11/33

Some basic implementations
The completeness proof

The mechanization of the proof

© Well-formed formulas

We define an inductive type form for well-formed formulas.

inductive form {o :nat} : Type
| atom : var o — form

| bot : form

| impl : form — form — form

| box : form — form

Some useful notation:

notation ‘#¢ := form.atom
notation ‘1‘ :=form.bot
notation ‘~¢ p :=(form.impl p (form.bot _))

notation p ‘D¢ q :=(form.impl p q)
notation ‘¢ p :=(form.box p)
notation ‘o¢ p :=(~ (O (~ p)))

Bruno Bentzen 11/33

Some basic implementations

The completeness proof

The mechanization of the proof

@ Contexts

We define contexts as sets of formulas, i.e., set (form o).

Bruno Bentzen 12/33

Some basic implementations
The completeness proof

The mechanization of the proof

@ Contexts

We define contexts as sets of formulas, i.e., set (form o).

O@[reducible] def ctx : Type := set (form o)
notation ¢-¢ := {}
notation [¢ p :=set.insert p [

notation I ‘LU¢ A :=set.union [A

Sets are predicates in Lean (set o := o — Prop).

Bruno Bentzen 12/33

Some basic implementations

The completeness proof
The mechanization of the proof

© The proof system

We define an inductive type prf that represents k-provability.

Bruno Bentzen 13/33

Some basic implementations
The completeness proof

The mechanization of the proof

© The proof system

We define an inductive type prf that represents k-provability.

inductive prf : ctx o — form o — Prop

ax {l :ctx o} {p :form o} (h :p € T) :prf [T p

pll {l :ctx o} {p q :form o} :prf T (p D (9 D p))

pl2 {l :ctx o} {p g r :form o} :prf T ((p D (g9 D r)) D ((p

5a) 5 (D)
pI3 {I :ctx o} {p q :form o} : prf T (((~p) D ~q) D (((~p) D a) D p))

mp {I :ctx o} {p q :form o} (hpq: prf T (p D q)) (hp :prf I p) :prf [q

k {T tctx o} {p q :form o} :prf I ((O(p D q)) D ((Hp) D (Oq)))

)
nec {I :ctx o} {p :form o} (h :prf - p) :prf [(Op)

notation I 'Fx' p =prf [p
notation I '¥#p' p =prf I p — false

Bruno Bentzen 13/33

Some basic implementations

The completeness proof
The mechanization of the proof

Q Semantics

We implement Kripke models as structures: triples given by a domain
wrlds, an accessibility relation access, and a valuation function val.

Bruno Bentzen 14 /33

Some basic implementations
The completeness proof

The mechanization of the proof

Q Semantics

We implement Kripke models as structures: triples given by a domain
wrlds, an accessibility relation access, and a valuation function val.
Q@[reducible] def wrld (o :nat) Type = set (form o)

variable {o :nat}

structure model = (wrlds : set (wrld o))
(access : wrld ¢ — wrld o — bool)
(val var 0 — wrld o — bool)

The truth-at-a-world relation is a function form ¢ — wrld — bool
indexed by a model.

Bruno Bentzen 14 /33

Some basic implementations

The completeness proof
The mechanization of the proof

Q Semantics

We implement Kripke models as structures: triples given by a domain
wrlds, an accessibility relation access, and a valuation function val.
Q@[reducible] def wrld (o :nat) Type = set (form o)

variable {o :nat}

structure model = (wrlds : set (wrld o))
(access : wrld ¢ — wrld o — bool)
(val var 0 — wrld o — bool)

The truth-at-a-world relation is a function form ¢ — wrld — bool
indexed by a model. It can be defined as follows:

noncomputable def form_tt_in_wrld (M : model) : form ¢ — wrld o — bool
| (#p) = A w, M.val pw
| L Aow, ff
| (p D q) =X w, (bnot (form_tt_in_wrld p w)) |[(form_tt_in_wrld q w)
RGO
|
(Vv € Mwrlds, w € M.wrlds — M.access w v =tt — form_tt_in_wrld p v =tt)
then
tt
else

ff

Bruno Bentzen 14 /33

Some basic implementations
The completeness proof

The mechanization of the proof

© Semantics

A model satisfies a formula if it is true at all possible worlds.
notation M ‘[[‘p‘]]* w =form_tt_in_wrld M p w

inductive stsf (M : model) (p : form o) :Prop
| is_true (m : Mw, (M [[p]] w) =tt) : stsf

notation M ‘Fr* p =stsf M p

Bruno Bentzen 15/33

Some basic implementations
The completeness proof

The mechanization of the proof

© Semantics

A model satisfies a formula if it is true at all possible worlds.
notation M ‘[[‘p‘]]* w =form_tt_in_wrld M p w

inductive stsf (M : model) (p : form o) :Prop
| is_true (m : Mw, (M [[p]] w) =tt) : stsf

notation M ‘Fr* p =stsf M p

A model satisfies a context if it satisfies each formula individually.
local attribute [instance] classical.prop_-decidable

noncomputable def ctx_tt_in_wrld (M : model) (= : ctx o) :wrld o — bool =
assume w, if (V p, p €l — form_tt_in_wrld M p w=tt) then tt else ff

notation M “[[‘T*]]" w =ctx_tt_in_-wrld M T w

inductive sem_csq ([:ctx o) (p :form o) :Prop
| is_true (m : M (M :model) (w : wrld o), ((M [[T]] w) =tt) — (M [[p]] w) =tt) :sem_csq

notation I 'Fyx' p =sem_csq [p

Bruno Bentzen 15/33

Some basic implementations
The completeness proof
The mechanization of the proof

Proof sketch (Henkin)

Recall the proof’s strategy:
© Show that if [s p, then ' U {=p} is consistent;
@ Extend I' U {—p} to a maximal consistent set A:

Ao =l U{-p}

A _JAnU {on+1} if AU {pnt1} is consistent
L A, U{~ppi1} otherwise

A::UA,,

neN

© Prove that A is consistent, maximal and that ' U {-p} C A;
O Construct a model M s.t. [p]m =1iff p € A;
© Show that [Ia =1 but [p]am = 0. O

Bruno Bentzen 16 /33

Some basic implementations

The completeness proof

The mechanization of the proof

@ Consistency

Consistency is defined as usual

Bruno Bentzen 17/33

Some basic implementations

The completeness proof

The mechanization of the proof

@ Consistency

Consistency is defined as usual

def is_consist (I :ctx o) :Prop =T ¥, L
def not_prvb_to_neg_consist {I :ctx o} {p :form o}

(T ¥x p) — is_consist (. ~ p) =
A hnp hc, hnp (prf.mp prf.dne (prf.deduction hc))

Bruno Bentzen 17/33

Some basic implementations

The completeness proof

The mechanization of the proof

@ Maximal consistent extensions

First we define a function ctx ¢ — nat — ctx o.

Bruno Bentzen 18/33

Some basic implementations

The completeness proof

The mechanization of the proof

@ Maximal consistent extensions

First we define a function ctx ¢ — nat — ctx o. It takes contexts and
codes of formulas as arguments, and then performs consistently-wise
decisions that either include that formula or its negation to context.

Bruno Bentzen 18/33

Some basic implementations

The completeness proof

The mechanization of the proof

@ Maximal consistent extensions

First we define a function ctx ¢ — nat — ctx o. It takes contexts and
codes of formulas as arguments, and then performs consistently-wise
decisions that either include that formula or its negation to context.

def ext_ctx_with_form (I :ctx o) :nat — ctx o =
A n, option.rec_on (encodable.decode (form o) n) I
(XA p, decidable.rec_on (prop-decidable (is_consist (. p)))
(A hn, T . ~p)
(Ah, T p)
)

Bruno Bentzen 18/33

Some basic implementations

The completeness proof

The mechanization of the proof

@ Maximal consistent extensions

First we define a function ctx ¢ — nat — ctx o. It takes contexts and
codes of formulas as arguments, and then performs consistently-wise
decisions that either include that formula or its negation to context.

def ext_ctx_with_form (I :ctx o) :nat — ctx o =
A n, option.rec_on (encodable.decode (form o) n) I
(XA p, decidable.rec_on (prop-decidable (is_consist (. p)))
(A hn, T . ~p)
(Ah, T p)
)

Note: our language is enumerable.

instance of_form : encodable (form o) =
(encode_form , decode_form o , encodek_form)

Bruno Bentzen 18/33

Some basic implementations

The completeness proof

The mechanization of the proof

@ Maximal consistent extensions

Next, we apply ext_ctx_with_form to all formulas

Bruno Bentzen 19/33

Some basic implementations
The completeness proof

The mechanization of the proof

@ Maximal consistent extensions

Next, we apply ext_ctx_with_form to all formulas

def ext_ctx_to_max_set_at ([:ctx o)
[0 = ext_ctx_with_form I 0
| (n+1) = ext_ctx_with_form

:nat — ctx o

(ext_ctx_-to_max_set_at n) (n+1)

Bruno Bentzen 19/33

Some basic implementations

The completeness proof

The mechanization of the proof

@ Maximal consistent extensions

Next, we apply ext_ctx_with_form to all formulas

def ext_ctx_-to_max_set_at ([:ctx o) :nat — ctx o =
[0 = ext_ctx_with_form I 0
| (n+1) = ext_ctx_with_form (ext_ctx_-to_max.set_at n) (n+1)

thus obtaining a maximal set:

def ext_ctx_to_max_set (I :ctx o) :ctx o =
Ug (image (A n, ext_ctx_-to_max_set_at I n) {n |[true})

Bruno Bentzen 19/33

Some basic implementations

The completeness proof

The mechanization of the proof

© Maximal consistent extensions are well-behaved

[" is a subset of its maximal extension, ext_ctx_to_max_set [.

Bruno Bentzen 20/33

Some basic implementations
The completeness proof

The mechanization of the proof

© Maximal consistent extensions are well-behaved

[" is a subset of its maximal extension, ext_ctx_to_max_set [.

def ctx_is_subctx_of_max_ext {[:ctx o}
[C ext_ctx_-to_max_set I =

begin
intros _ _, apply ext_ctx_at_is_sub_max_set ,
apply ctx_is_sub_ext_ctx_at , repeat {assumption}
end

Bruno Bentzen 20/33

Some basic implementations

The completeness proof

The mechanization of the proof

@ Maximal consistent extensions are well-behaved

This extension ext_ctx_to_max_set I is indeed maximal.

Bruno Bentzen 21/33

Some basic implementations
The completeness proof

The mechanization of the proof

@ Maximal consistent extensions are well-behaved

This extension ext_ctx_to_max_set I is indeed maximal.

def ext_ctx_with_form_of_its_code {I :ctx o} {p :form o}
(p € ext_ctx_with_form I (encodable.encode p))
V
((~ p) € ext_ctx_with_form I (encodable.encode p))
begin
unfold ext_ctx_with_form ,
rw (encodable.encodek p),
simp, induction (prop_-decidable _),
simp, right, apply trivial_mem_left ,
simp, left, apply trivial_-mem_left

end

Bruno Bentzen 21/33

Some basic implementations
The completeness proof

The mechanization of the proof

© Maximal consistent extensions are well-behaved

def ext_ctx_.is_max {I :ctx o} (p :form o)
(p € ext_ctx_to_max_set) V ((~p) € ext_ctx_to_max_set) =
begin
cases ext_ctx_with_form_of_its_code ,
left ,
apply ext_ctx_at_is_sub_max_set ,
apply ext_ctx_form_is_sub_ext_ctx_at ,
apply no_code_is_zero p, assumption,
right ,
apply ext_ctx_at_is_sub_max_set ,
apply ext_ctx_form_is_sub_ext_ctx_at,
apply no_code_is_zero p, assumption,
end

Bruno Bentzen 22/33

Some basic implementations
The completeness proof

The mechanization of the proof

© Maximal consistent extensions are well-behaved

Maximal consistent extensions preserve consistency

def max_ext_preserves_consist {[:ctx o}
is_consist — is_consist (ext_ctx_to_max_set) =
by intros hc nc; cases ext_ctx_lvl nc;
apply ctx_consist_ext_ctx_at_consist; repeat {assumption}

Bruno Bentzen 23/33

Some basic implementations
The completeness proof

The mechanization of the proof

© Maximal consistent extensions are well-behaved

Maximal consistent extensions preserve consistency

def max_ext_preserves_consist {[:ctx o}
is_consist — is_consist (ext_ctx_to_max_set) =
by intros hc nc; cases ext_ctx_lvl nc;
apply ctx_consist_ext_ctx_at_consist; repeat {assumption}

This implies that maximal consistent sets are closed under derivability.

def max_set_clsd_deriv {I :ctx o} {p :form o} (hc :is_consist I)
(ext_ctx_to_max_set I -y p) — p € ext_ctx_to_max_set I =
begin

intro h,

cases ext_ctx_is_max p,
assumption ,
apply false.rec,
apply max_ext_preserves_consist, assumption,
apply prf.mp, apply prf.ax, assumption, assumption
end

Bruno Bentzen 23/33

Some basic implementations

The completeness proof

The mechanization of the proof

@ The canonical model

The set of all possible worlds W is the set of all maximal consistent sets.

def set_max_wrlds (o :nat) : set (wrld o) =
image (A w, ext_ctx_to_max_set w) {w |is_consist w }

Bruno Bentzen 24 /33

Some basic implementations
The completeness proof

The mechanization of the proof

@ The canonical model

The accessibility relation R is given via the ‘unbox’ operation

def unbox_form_in_wrld (w : wrld o) :nat — wrld o =
A n, option.rec_on (encodable.decode (form o) n) -
(X p, form.rec_on p
Av,) - (Nagr - -, -
(Mg -, if (Og) € w then {q} else -)
)

Bruno Bentzen 25/33

Some basic implementations
The completeness proof

The mechanization of the proof

@ The canonical model

The accessibility relation R is given via the ‘unbox’ operation

def unbox_form_in_wrld (w : wrld o) :nat — wrld ¢
A n, option.rec_on (encodable.decode (form o) n) -
(X p, form.rec_on p

Av,) - (Nagr - -, -
(Mg -, if (Og) € w then {q} else -)

)

def unbox_wrld (w : wrld o) :wrld o =
Uy (image (A n, unbox_form_in_wrld w n) {n |true})

Bruno Bentzen 25/33

Some basic implementations
The completeness proof

The mechanization of the proof

@ The canonical model

The accessibility relation R is given via the ‘unbox’ operation

def unbox_form_in_wrld (w : wrld o) :nat — wrld ¢
A n, option.rec_on (encodable.decode (form o) n) -
(X p, form.rec_on p

Av,) - (Nagr - -, -

(Mg -, if (Og) € w then {q} else -)
)

def unbox_wrld (w : wrld o) :wrld o =
Uy (image (A n, unbox_form_in_wrld w n) {n |true})

noncomputable def wrlds_to_access : wrld ¢ — wrld ¢ — bool =
assume w v, if (unbox_wrld w D v) then tt else ff

Bruno Bentzen 25/33

Some basic implementations
The completeness proof

The mechanization of the proof

© The canonical model

In particular,

def in_unbox_box_in_wrld {p : form o} {w :wrld o}
p € unbox_wrld w « (Op) € w =
begin
apply iff.intro,
intro h, cases h, cases h_h,
cases h_h_w, cases h_h_w_h, cases h_h_w_h_right,

revert h_h_h, induction (encodable.decode (form o) .),
simp, intro, apply false.rec, assumption,
simp, induction val,
repeat {simp, intro h, apply false.rec, assumption},
simp, unfold ite, induction (prop-decidable _),
simp, intro, apply false.rec, assumption,
simp, intro h, cases h, assumption,

intro h, unfold unbox_wrld image sUnion,

constructor , constructor, constructor
trivial , reflexivity ,

exact encodable.encode (Op),

unfold unbox_form_in_wrld ite

rw (encodable.encodek Op),
simp, induction p,

repeat {
induction prop-decidable
contradiction , simp,

}

, constructor ,

Some basic implementations

The completeness proof

The mechanization of the proof

@ The canonical model

Useful corollaries are:

def not_box_in_wrld_unbox_not_prvble {p form o} {w :wrld o} (hw :w € set_max.wrlds o)
(~0Op) € w — (unbox_wrld w ¥, p) =
begin

intros h nhp,
apply all_wrlds_are_consist hw,
apply prf.mp,
apply prf.ax h,
apply prf.ax (unbox_prvble_box_in_wrld hw nhp)
end

def not_box_in_wrld_to_consist_not {p : form o} {w :wrld o} (hw :w € set_max._wrlds o)

(~0Op) € w — is_consist (unbox_wrld w. (~p)) =
A hn, not_prvb_to_neg_consist (not_box_in_wrld_unbox_not_prvble hw hn)

Bruno Bentzen 27/33

Some basic implementations

The completeness proof

The mechanization of the proof

@ The canonical model

The valuation function v can be defined as follows:

noncomputable def wrlds_to_val : var ¢ — wrld 0 — bool =
assume p w, if w € set_max_wrlds o A (#p) € w then tt else ff

Bruno Bentzen 28/33

Some basic implementations
The completeness proof

The mechanization of the proof

@ The canonical model

The valuation function v can be defined as follows:

noncomputable def wrlds_to_val var ¢ — wrld o0 — bool =
assume p w, if w € set_max_wrlds o A (#p) € w then tt else ff

By putting all the pieces together we have:

noncomputable def canonical_-model : @model o =
begin
apply model.mk,
apply set_max_wrlds ,
apply wrlds_to_access ,

apply wrlds_to_val
end

Bruno Bentzen 28/33

Some basic implementations
The completeness proof

The mechanization of the proof

© The canonical model

Now we show that truth is membership in the canonical model

def tt_iff_in_wrld {p : form o}

V (w :wrld o) (wm :w € set_max_wrlds o), [[p]] w) =tt < p € w

(canonical_model

begin
induction p,
sorry , sorry, sorry, /—— we will not discuss the atom, bot, and impl cases —/

unfold form_tt_.in_wrld , simp, intros, — box

apply iff.intro,
intro h, cases all_wrlds_are_max wm Op.a,

apply false.rec, apply max_ext_preserves_consist ,
apply not_box_in_wrld_to_consist_not wm h_1,
apply prf.mp, apply prf.ax,
apply ctx_is_subctx_of_max_ext, exact trivial_-mem_left ,
apply prf.ax, apply (p-ih (max_cons_set_in_all_wrlds
(not_box_in_wrld_to_consist_not wm h_1))).1,
apply h, assumption,
exact max_cons_set_in_all_wrlds
(not_box_in_wrld_to_consist_not wn h_1),
unfold canonical_-model wrlds_to_access, simp,
intros p pm, apply ctx-is_subctx_.of_max_ext,
apply mem_ext_cons_left, assumption,
intros h v, unfold canonical_-model wrlds_to_access ,

simp, intros ww vw rwv, apply (p-ih - vw).2,
apply rwv, apply in_unbox_box_-in_wrld.2, assumption

assumption ,

Some basic implementations

The completeness proof

The mechanization of the proof

@ The canonical model
Informally we have:

(IH) (canonical model[[p]lw) =tt <+ p € w

Bruno Bentzen 30/33

Some basic implementations

The completeness proof

The mechanization of the proof

@ The canonical model
Informally we have:

(IH) (canonical model[[p]lw) =tt <+ p € w
— Assume that (canonical model[[Cp]]w) = tt and that ~ Op € w.

Bruno Bentzen 30/33

Some basic implementations

The completeness proof

The mechanization of the proof

@ The canonical model
Informally we have:

(IH) (canonical model[[p]lw) =tt <+ p € w

— Assume that (canonical model[[Cp]]w) = tt and that ~ Op € w.
But then unbox_wrld w.(~ p) is consistent and can be extended to a
possible world.

Bruno Bentzen 30/33

Some basic implementations
The completeness proof

The mechanization of the proof

@ The canonical model

Informally we have:

(IH) (canonical model[[p]lw) =tt <+ p € w

— Assume that (canonical model[[Cp]]w) = tt and that ~ Op € w.
But then unbox_wrld w.(~ p) is consistent and can be extended to a
possible world. It is accessible to w because unbox_wrld

w C ext_ctx_to_max_set(unbox_wrld w,(~ p)), so p should be true
at w.

Bruno Bentzen 30/33

Some basic implementations
The completeness proof

The mechanization of the proof

@ The canonical model
Informally we have:

(IH) (canonical model[[p]lw) =tt <+ p € w

— Assume that (canonical model[[Cp]]w) = tt and that ~ Op € w.
But then unbox_wrld w.(~ p) is consistent and can be extended to a
possible world. It is accessible to w because unbox_wrld
w C ext_ctx_to_max_set(unbox_wrld w,(~ p)), so p should be true
at w. But p ¢ ext_ctx_to_max_set(unbox_wrld w,(~ p)) because it
is consistent.

Bruno Bentzen 30/33

Some basic implementations

The completeness proof

The mechanization of the proof

@ The canonical model
Informally we have:

(IH) (canonical model[[p]lw) =tt«+> p € w

— Assume that (canonical model[[Cp]]w) = tt and that ~ Op € w.
But then unbox_wrld w.(~ p) is consistent and can be extended to a
possible world. It is accessible to w because unbox_wrld
w C ext_ctx_to_max_set(unbox_wrld w,(~ p)), so p should be true
at w. But p ¢ ext_ctx_to_max_set(unbox_wrld w,(~ p)) because it
is consistent.

< Assume that Op € w. Given v € M.wrld and M.access w v = tt, we
have to show that (canonical model[[p]]v) = tt. By our IH, it
suffices to show that p € v, but unbox wrld w C v and Up € w.

Bruno Bentzen 30/33

Some basic implementations
The completeness proof

The mechanization of the proof

@ The completeness proof

We complete the proof by showing that the canonical model falsifies p at
the possible world ext_ctx_tomax_set (I, ~ p)

def ctx-is_tt ([:ctx o) (wm :I € set_max_wrlds o)

(canonical_model [[T]]) =tt =

mem_tt_to_ctx_tt [(A p pm, (tt-iff_.in_wrld _ wm).2 pm)

def cmpltnss {[:ctx o} {p :form o}
(T Fep) = (F e p) =

begin
apply not_contrap, intros nhp hp, cases hp,
have ¢ : is_consist (L~ p) :=not_prvb_to_neg_consist nhp,
apply absurd,
apply hp,

apply cons_ctx._tt_to_ctx_tt,
apply ctx_tt_to_subctx_tt ,
apply ctx_is_tt (ext_ctx_-to_max.set (L ~ p)),
apply max.cons_set_in_all_wrlds c,
apply ctx-is_subctx_of_max_ext,

simp, apply neg_tt_iff_ff.1, apply and.elim_right, apply cons_ctx_tt_iff_and.1,
apply ctx_tt_-to_subctx_tt ,
apply ctx_is_tt (ext_ctx_-to_max.set (L~ p)),
apply max_cons_set_in_all_wrlds c,

apply ctx_is_subctx_of_max_ext ,
end

Bruno Bentzen 31/33

Some basic implementations

The completeness proof

The mechanization of the proof

Thank you!

Bruno Bentzen 32/33

Some basic implementations
The completeness proof
The mechanization of the proof

References

@ Bruno Bentzen. Metalogic, an implementation of the metatheorems of some logics in Lean.
URL: https://github.com/bbentzen/metalogic/. Online.

Bruno Bentzen 33/33

https://github.com/bbentzen/metalogic/

	Outline
	The proof: general idea
	The aim of this talk

	The propositional modal logic K
	The proof system
	Semantics

	The mechanization of the proof
	Some basic implementations
	The completeness proof

