A Formalization of a Henkin-style Completeness Proof for Propositional Modal Logic in Lean

Bruno Bentzen

Department of Philosophy
Carnegie Mellon University

January 7, 2019
1 The proof: general idea
 - The aim of this talk

2 The propositional modal logic K
 - The proof system
 - Semantics

3 The mechanization of the proof
 - Some basic implementations
 - The completeness proof
Theorem (Strong completeness)

A system of propositional logic S is (strongly) complete if for every set of premises Γ, any formula p that follows semantically from Γ is also derivable from Γ. In symbols:

$$\Gamma \models_S p \implies \Gamma \vdash_S p$$

That is, every semantic consequence is also a syntactic consequence.
Theorem (Strong completeness)

A system of propositional logic S is (strongly) complete if for every set of premises Γ, any formula p that follows semantically from Γ is also derivable from Γ. In symbols:

$$\Gamma \models_S p \implies \Gamma \vdash_S p$$

That is, every semantic consequence is also a syntactic consequence.

Proof sketch (Henkin)

The proof follows by (reverse) contraposition and it is thus non-constructive.
Theorem (Strong completeness)

A system of propositional logic S is (strongly) complete if for every set of premises Γ, any formula p that follows semantically from Γ is also derivable from Γ. In symbols:

$$\Gamma \models_S p \iff \Gamma \vdash_S p$$

That is, every semantic consequence is also a syntactic consequence.

Proof sketch (Henkin)

The proof follows by (reverse) contraposition and it is thus non-constructive. Simply put, we want to show that if $\Gamma \not\models_S p$, then there exists a model \mathcal{M} such that \mathcal{M} satisfies Γ but not p.
The general method of the proof is the following:

1. \(\Gamma \cup \{ \neg p \} \) is consistent, for \(\Gamma \nvdash_S p \);
2. Extend \(\Gamma \cup \{ \neg p \} \) to a maximal consistent set \(\Delta \) as follows:

\[
\Delta_0 := \Gamma \cup \{ \neg p \} \\
\Delta_{n+1} := \begin{cases}
\Delta_n \cup \{ \phi \} & \text{if } \Delta_n \cup \{ \phi \} \text{ is consistent} \\
\Delta_n \cup \{ \neg \phi \} & \text{otherwise}
\end{cases}
\]

3. Prove that \(\Delta \) is consistent, maximal and that \(\Gamma \cup \{ \neg p \} \subseteq \Delta \);
4. Construct a model \(M \) s.t. \(J_{\phi}^K_M = 1 \) iff \(\phi \in \Delta \);
5. Show that \(J_{\Gamma}^K_M = 1 \) but \(J_p^K_M = 0 \). □
Proof sketch (Henkin) [cont.]

The general method of the proof is the following:

1. $\Gamma \cup \{\neg p\}$ is consistent, for $\Gamma \not\vdash p$;
2. Extend $\Gamma \cup \{\neg p\}$ to a maximal consistent set Δ as follows:

 $$\Delta_0 := \Gamma \cup \{\neg p\}$$
 $$\Delta_{n+1} := \begin{cases}
 \Delta_n \cup \{\varphi_{n+1}\} & \text{if } \Delta_n \cup \{\varphi_{n+1}\} \text{ is consistent} \\
 \Delta_n \cup \{\neg \varphi_{n+1}\} & \text{otherwise}
 \end{cases}$$

 $$\Delta := \bigcup_{n \in \mathbb{N}} \Delta_n$$

3. Prove that Δ is consistent, maximal and that $\Gamma \cup \{\neg p\} \subseteq \Delta$;
4. Construct a model M s.t. $\mathcal{J}_{\varphi}^M = 1$ iff $\varphi \in \Delta$;
5. Show that $\mathcal{J}_{\Gamma}^M = 1$ but $\mathcal{J}_p^M = 0$. □
Proof sketch (Henkin) [cont.]

The general method of the proof is the following:

1. \(\Gamma \cup \{\neg p\} \) is consistent, for \(\Gamma \not\vdash S p \);

2. Extend \(\Gamma \cup \{\neg p\} \) to a maximal consistent set \(\Delta \) as follows:

\[
\Delta_0 := \Gamma \cup \{\neg p\}
\]

\[
\Delta_{n+1} := \begin{cases}
\Delta_n \cup \{\varphi_{n+1}\} & \text{if } \Delta_n \cup \{\varphi_{n+1}\} \text{ is consistent} \\
\Delta_n \cup \{\neg \varphi_{n+1}\} & \text{otherwise}
\end{cases}
\]

\[
\Delta := \bigcup_{n \in \mathbb{N}} \Delta_n
\]

3. Prove that \(\Delta \) is consistent, maximal and that \(\Gamma \cup \{\neg p\} \subseteq \Delta \);
The general method of the proof is the following:

1. \(\Gamma \cup \{\neg p\} \) is consistent, for \(\Gamma \not\models S\ p; \)
2. Extend \(\Gamma \cup \{\neg p\} \) to a maximal consistent set \(\Delta \) as follows:
 \[
 \Delta_0 := \Gamma \cup \{\neg p\}
 \]
 \[
 \Delta_{n+1} := \begin{cases}
 \Delta_n \cup \{\varphi_{n+1}\} & \text{if } \Delta_n \cup \{\varphi_{n+1}\} \text{ is consistent} \\
 \Delta_n \cup \{\neg \varphi_{n+1}\} & \text{otherwise}
 \end{cases}
 \]
 \[
 \Delta := \bigcup_{n \in \mathbb{N}} \Delta_n
 \]
3. Prove that \(\Delta \) is consistent, maximal and that \(\Gamma \cup \{\neg p\} \subseteq \Delta; \)
4. Construct a model \(\mathcal{M} \) s.t. \(\models p \mathcal{M} = 1 \) iff \(p \in \Delta; \)
Proof sketch (Henkin) [cont.]

The general method of the proof is the following:

1. $\Gamma \cup \{\neg p\}$ is consistent, for $\Gamma \nvdash S p$;
2. Extend $\Gamma \cup \{\neg p\}$ to a maximal consistent set Δ as follows:

 \[
 \Delta_0 := \Gamma \cup \{\neg p\}
 \]

 \[
 \Delta_{n+1} := \begin{cases}
 \Delta_n \cup \{\varphi_{n+1}\} & \text{if } \Delta_n \cup \{\varphi_{n+1}\} \text{ is consistent} \\
 \Delta_n \cup \{\neg \varphi_{n+1}\} & \text{otherwise}
 \end{cases}
 \]

 \[
 \Delta := \bigcup_{n \in \mathbb{N}} \Delta_n
 \]

3. Prove that Δ is consistent, maximal and that $\Gamma \cup \{\neg p\} \subseteq \Delta$;
4. Construct a model \mathcal{M} s.t. $[\varphi]_{\mathcal{M}} = 1$ iff $\varphi \in \Delta$;
5. Show that $[\Gamma]_{\mathcal{M}} = 1$ but $[p]_{\mathcal{M}} = 0$. □
What do we need for a formalization of a Henkin-style completeness proof?
What do we need for a formalization of a Henkin-style completeness proof?

The structure of the implementation

The mechanization of the proof requires four basic implementations:

- The set of well-formed formulas of S;
What do we need for a formalization of a Henkin-style completeness proof?

The structure of the implementation

The mechanization of the proof requires four basic implementations:

- The set of well-formed formulas of S;
- The contexts of S;

Remark

Implicit in the previous proof sketch are the assumptions that S has a (not necessarily primitive) logical connective for negation; S has an enumerable language; S is a classical (as opposed to constructive) logic.
What do we need for a formalization of a Henkin-style completeness proof?

The structure of the implementation

The mechanization of the proof requires four basic implementations:

- The set of well-formed formulas of S;
- The contexts of S;
- The proof system of S;

Remark

Implicit in the previous proof sketch are the assumptions that S has a (not necessarily primitive) logical connective for negation; S has an enumerable language; S is a classical (as opposed to constructive) logic.
What do we need for a formalization of a Henkin-style completeness proof?

The structure of the implementation

The mechanization of the proof requires four basic implementations:

- The set of well-formed formulas of S;
- The contexts of S;
- The proof system of S;
- The class of models of S;
What do we need for a formalization of a Henkin-style completeness proof?

The structure of the implementation

The mechanization of the proof requires four basic implementations:

- The set of well-formed formulas of \(S \);
- The contexts of \(S \);
- The proof system of \(S \);
- The class of models of \(S \);

Remark: Implicit in the previous proof sketch are the assumptions that

- \(S \) has a (not necessarily primitive) logical connective for negation;
- \(S \) has an enumerable language.
- \(S \) is a classical (as opposed to constructive) logic.
What do we need for a formalization of a Henkin-style completeness proof?

The structure of the implementation

The mechanization of the proof requires four basic implementations:

- The set of well-formed formulas of S;
- The contexts of S;
- The proof system of S;
- The class of models of S;

Remark

Implicit in the previous proof sketch are the assumptions that

- S has a (not necessarily primitive) logical connective for negation;
What do we need for a formalization of a Henkin-style completeness proof?

The structure of the implementation

The mechanization of the proof requires four basic implementations:

- The set of well-formed formulas of S;
- The contexts of S;
- The proof system of S;
- The class of models of S;

Remark

Implicit in the previous proof sketch are the assumptions that

- S has a (not necessarily primitive) logical connective for negation;
- S has an enumerable language.
What do we need for a formalization of a Henkin-style completeness proof?

The structure of the implementation

The mechanization of the proof requires four basic implementations:

- The set of well-formed formulas of S;
- The contexts of S;
- The proof system of S;
- The class of models of S;

Remark

Implicit in the previous proof sketch are the assumptions that

- S has a (not necessarily primitive) logical connective for negation;
- S has an enumerable language.
- S is a classical (as opposed to constructive) logic.
What do we need for a formalization of a Henkin-style completeness proof?

The structure of the implementation

The mechanization of the proof requires four basic implementations:
- The set of well-formed formulas of S;
- The contexts of S;
- The proof system of S;
- The class of models of S;

Remark

Implicit in the previous proof sketch are the assumptions that
- S has a (not necessarily primitive) logical connective for negation;
- S has an enumerable language.
- S is a classical (as opposed to constructive) logic.
In this talk we present a formalization of a Henkin-style completeness proof for the propositional modal logic K using the Lean Theorem Prover.
In this talk we present a formalization of a Henkin-style completeness proof for the propositional modal logic K using the Lean Theorem Prover. The full source code is available at:

https://github.com/bbentzen/metalogic/
The proof: general idea
- The aim of this talk

The propositional modal logic K
- The proof system
- Semantics

The mechanization of the proof
- Some basic implementations
- The completeness proof
The proof system of K. We shall work in a Hilbert-style system:

Axioms.

1. \(\Gamma \vdash_k p \supset (q \supset p) \);
2. \(\Gamma \vdash_k (p \supset (q \supset r)) \supset ((p \supset q) \supset (p \supset r)) \);
3. \(\Gamma \vdash_k ((\neg p) \supset \neg q) \supset (((\neg p) \supset q) \supset p) \);
4. \(\Gamma \vdash_k (p \supset q) \supset (\Box p \supset \Box q) \).
A Formalization of a Henkin-style Completeness Proof for Propositional Modal Logic in Lean

1. **The proof system of K.** We shall work in a Hilbert-style system:
 1. **Axioms.**
 - (pl1) $\Gamma \vdash_k p \supset (q \supset p)$;
 - (pl2) $\Gamma \vdash_k (p \supset (q \supset r)) \supset ((p \supset q) \supset (p \supset r))$;
 - (pl3) $\Gamma \vdash_k (\neg p) \supset \neg q \supset (((\neg p) \supset q) \supset p)$;
 - (k) $\Gamma \vdash_k (p \supset q) \supset (\Box p \supset \Box q)$.
 2. **Rules of inference.**
 - (ax) \[p \in \Gamma \]
 \[\Gamma \vdash_k p \]
 - (mp) \[\Gamma \vdash_k p \supset q \]
 \[\Gamma \vdash_k p \]
 \[\Gamma \vdash_k q \]
 - (nec) \[\Gamma \vdash_k p \]
 \[\Gamma \vdash_k \Box p \]
The semantics of K. The semantics for our modal logic will be given using Kripke semantics.
The semantics of K. The semantics for our modal logic will be given using Kripke semantics. A Kripke model is a triple $\langle W, R, \nu \rangle$ where

- W is a set of objects called possible worlds;
- R is a binary relation on possible worlds;
- ν specifies the truth value of a formula at a world.
The semantics of K. The semantics for our modal logic will be given using Kripke semantics. A Kripke model is a triple $\langle \mathcal{W}, \mathcal{R}, \nu \rangle$ where
- \mathcal{W} is a set of objects called possible worlds;
- \mathcal{R} is a binary relation on possible worlds;
- ν specifies the truth value of a formula at a world.

We define the truth of a formula at a world in a model recursively:
1. (var) $w \models p$ if $\nu(p, w) = 1$;
2. (\bot) $w \not\models \bot$;
3. (\rightarrow) $w \models p \rightarrow q$ if $w \not\models p$ or $w \models p$;
4. (\Box) if for every world $v \in \mathcal{W}$, $\mathcal{R}(w, v)$ implies $v \models p$
1. The proof: general idea
 • The aim of this talk

2. The propositional modal logic K
 • The proof system
 • Semantics

3. The mechanization of the proof
 • Some basic implementations
 • The completeness proof
Well-formed formulas

We define an inductive type `form` for well-formed formulas.

```lean
inductive form (σ : nat) : Type
  | atom : var σ → form
  | bot : form
  | impl : form → form → form
  | box : form → form
```

Some useful notation:
- `# := form . atom`
- `⊥ := form . bot _`
- `∼ p := (form . impl p (form . bot _))`
- `p ⊃ q := (form . impl p q)`
- `□ p := (form . box p)`
- `⋄ p := (∼ (□ (∼ p)))`
Well-formed formulas

We define an inductive type `form` for well-formed formulas.

```lean
inductive form {σ : nat} : Type
| atom : var σ → form
| bot : form
| impl : form → form → form
| box : form → form
```

Some useful notation:

```lean
notation ´#´ := form.atom
notation ´⊥´ := form.bot _
notation ´¬´ p := (form.impl p (form.bot _))
notation p ´⊃´ q := (form.impl p q)
notation ´□´ p := (form.box p)
notation ´◊´ p := (¬ (□ (¬ p)))
```
2 Contexts

We define contexts as sets of formulas, i.e., set (form σ).
2 Contexts

We define contexts as sets of formulas, i.e., \(\text{set} \ (\text{form} \ \sigma) \).

@[reducible] def ctx : Type := set (form σ)

 notation '·' := {}
 notation Γ '·' p := set.insert p Γ
 notation Γ '⊔' Δ := set.union Γ Δ

Sets are predicates in Lean (set \(\alpha \) := \(\alpha \rightarrow \text{Prop} \)).
3 The proof system

We define an inductive type `prf` that represents k-provability.
3 The proof system

We define an inductive type `prf` that represents k-provability.

```
inductive prf : ctx σ → form σ → Prop
| ax {Γ : ctx σ} {p : form σ} (h : p ∈ Γ) : prf Γ p
| pl1 {Γ : ctx σ} {p q : form σ} : prf Γ (p ⊃ (q ⊃ p))
| pl2 {Γ : ctx σ} {p q r : form σ} : prf Γ ((p ⊃ (q ⊃ r)) ⊃ ((p ⊃ q) ⊃ (p ⊃ r)))
| pl3 {Γ : ctx σ} {p q : form σ} : prf Γ (((~p) ⊃ ~q) ⊃ ((~p) ⊃ q) ⊃ p))
| mp {Γ : ctx σ} {p q : form σ} (hpq : prf Γ (p ⊃ q)) (hp : prf Γ p) : prf Γ q
| k {Γ : ctx σ} {p q : form σ} : prf Γ ((□(p ⊃ q)) ⊃ ((□p) ⊃ (□q)))
| nec {Γ : ctx σ} {p : form σ} (h : prf · p) : prf Γ (□p)
```

notation $\Gamma \vdash_k p := \text{prf } \Gamma p$
notation $\Gamma \not\vdash_k p := \text{prf } \Gamma p \rightarrow \text{false}$
Semantics

We implement Kripke models as structures: triples given by a domain \(\text{wrlds} \), an accessibility relation \(\text{access} \), and a valuation function \(\text{val} \).
4 Semantics

We implement Kripke models as structures: triples given by a domain \(\text{wrl}ds \), an accessibility relation \(\text{access} \), and a valuation function \(\text{val} \).

\[
@\text{reducible} \ \text{def} \ \text{wrld} (\sigma : \text{nat}) : \text{Type} := \text{set} (\text{form} \ \sigma)
\]

\[
\text{variable} \ \{\sigma : \text{nat}\}
\]

\[
\text{structure} \ \text{model} := (\text{wrl}ds : \text{set} (\text{wrld} \ \sigma))
\]

\[
(\text{access} : \text{wrld} \ \sigma \to \text{wrld} \ \sigma \to \text{bool})
\]

\[
(\text{val} : \text{var} \ \sigma \to \text{wrld} \ \sigma \to \text{bool})
\]

The truth-at-a-world relation is a function \(\text{form} \ \sigma \to \text{wrld} \to \text{bool} \) indexed by a model.
Semantics

We implement Kripke models as structures: triples given by a domain \texttt{wrlds}, an accessibility relation \texttt{access}, and a valuation function \texttt{val}.

\begin{verbatim}
@[reducible] def wrld (σ : nat) : Type := set (form σ)

variable {σ : nat}

structure model := (wrlds : set (wrld σ))
 (access : wrld σ → wrld σ → bool)
 (val : var σ → wrld σ → bool)

The truth-at-a-world relation is a function \texttt{form σ → wrld → bool} indexed by a model. It can be defined as follows:

noncomputable def form_tt_in_wrld (M : model) : form σ → wrld σ → bool
| (#p) := \(\lambda w, M.\val p w\)
| ⊥ := \(\lambda w, ff\)
| (p ⊃ q) := \(\lambda w, (\bnot (form_tt_in_wrld p w)) \| (form_tt_in_wrld q w)\)
| (□p) := \(\lambda w,\) if
 \((\forall v ∈ M.\texttt{wrld}s, w ∈ M.\texttt{wrld}s \rightarrow M.\texttt{access} w v = tt \rightarrow form_tt_in_wrld p v = tt)\)
then
 tt
else
 ff
\end{verbatim}
Semantics

A model satisfies a formula if it is true at all possible worlds.

\[
\text{notation } M \models \phi \text{ w := form tt in wrld } M \phi w
\]

\[
\text{inductive stsf (M : model) (p : form } \sigma) : \text{Prop | is_true (m : } \Pi \text{ w, (M } \phi \text{ w) = tt) : stsf}
\]

\[
\text{notation } M \vDash_k \phi \text{ := stsf } M \phi
\]
Semantics

A model satisfies a formula if it is true at all possible worlds.

\[
\text{notation } M \left['\left[\left[p\right]\right]\right]' w := \text{form_tt_in_wrld } M p w
\]

\[
\text{inductive } \text{stsf} (M : \text{model}) (p : \text{form } \sigma) : \text{Prop} \\
\mid \text{is_true} (m : \Pi w, (M \left[\left[p\right]\right] w) = \text{tt}) : \text{stsf}
\]

\[
\text{notation } M \left['\left[k\right]\right]' p := \text{stsf } M p
\]

A model satisfies a context if it satisfies each formula individually.

\[
\text{local attribute [instance] classical.prop_decidable}
\]

\[
\text{noncomputable def } \text{ctx_tt_in_wrld} (M : \text{model}) (\rightarrow : \text{ctx } \sigma) : \text{wrld } \sigma \rightarrow \text{bool} := \\
\text{assume } w, \text{ if } (\forall p, p \in \Gamma \rightarrow \text{form_tt_in_wrld } M p w = \text{tt}) \text{ then tt else ff}
\]

\[
\text{notation } M \left['\left[\Gamma\right]\right]' w := \text{ctx_tt_in_wrld } M \Gamma w
\]

\[
\text{inductive } \text{sem_csq} (\Gamma : \text{ctx } \sigma) (p : \text{form } \sigma) : \text{Prop} \\
\mid \text{is_true} (m : \Pi (M : \text{model}) (w : \text{wrld } \sigma), ((M \left[\left[\Gamma\right]\right] w) = \text{tt}) \rightarrow (M \left[\left[p\right]\right] w) = \text{tt}) : \text{sem_csq}
\]

\[
\text{notation } \Gamma \left['\left[k\right]\right]' p := \text{sem_csq } \Gamma p
\]
Proof sketch (Henkin)

Recall the proof’s strategy:

1. Show that if $\Gamma \not\models S \neg p$, then $\Gamma \cup \{\neg p\}$ is consistent;
2. Extend $\Gamma \cup \{\neg p\}$ to a maximal consistent set Δ:

$$
\Delta_0 := \Gamma \cup \{\neg p\}
$$

$$
\Delta_{n+1} :=
\begin{cases}
\Delta_n \cup \{\varphi_{n+1}\} & \text{if } \Delta_n \cup \{\varphi_{n+1}\} \text{ is consistent} \\
\Delta_n \cup \{\neg \varphi_{n+1}\} & \text{otherwise}
\end{cases}
$$

$$
\Delta := \bigcup_{n \in \mathbb{N}} \Delta_n
$$

3. Prove that Δ is consistent, maximal and that $\Gamma \cup \{\neg p\} \subseteq \Delta$;
4. Construct a model \mathcal{M} s.t. $[\varphi]_\mathcal{M} = 1$ iff $\varphi \in \Delta$;
5. Show that $[\Gamma]_\mathcal{M} = 1$ but $[p]_\mathcal{M} = 0$.

□
1 Consistency

Consistency is defined as usual
Consistency

Consistency is defined as usual

```lean
def is_consist (Γ : ctx σ) : Prop := Γ ⊭ K ⊥

def not_prvb_to_neg_consist {Γ : ctx σ} {p : form σ} : (Γ ⊭ K p) → is_consist (Γ ⊳ p) :=
λ hnp hc, hnp (prf.mp prf.dne (prf.deduction hc))
```
Maximal consistent extensions

First we define a function $\text{ctx } \sigma \rightarrow \text{nat } \rightarrow \text{ctx } \sigma$.
Maximal consistent extensions

First we define a function $\text{ctx} \sigma \rightarrow \text{nat} \rightarrow \text{ctx} \sigma$. It takes contexts and codes of formulas as arguments, and then performs consistently-wise decisions that either include that formula or its negation to context.
Maximal consistent extensions

First we define a function $\text{ctx} \sigma \to \text{nat} \to \text{ctx} \sigma$. It takes contexts and codes of formulas as arguments, and then performs consistently-wise decisions that either include that formula or its negation to context.

```lean
def ext_ctx_with_form (Γ : ctx σ) : nat → ctx σ :=
λ n, option.rec_on (encodable.decode (form σ) n) Γ
  (λ p, decidable.rec_on (prop_decidable (is_consist (Γ . p)))
    (λ hn, Γ . ∼p)
    (λ h, Γ . p))
```

Note: our language is enumerable.
Maximal consistent extensions

First we define a function \(\text{ctx} \sigma \rightarrow \text{nat} \rightarrow \text{ctx} \sigma \). It takes contexts and codes of formulas as arguments, and then performs consistently-wise decisions that either include that formula or its negation to context.

\[
\text{def} \quad \text{ext_ctx_with_form} \ (\Gamma : \text{ctx} \sigma) : \text{nat} \rightarrow \text{ctx} \sigma := \\
\lambda \ n, \ \text{option.rec_on} \ ((\text{encodable.decode} \ (\text{form} \sigma) \ n) \ \Gamma \\
(\lambda \ p, \ \text{decidable.rec_on} \ ((\text{prop_decidable} \ (\text{is_consistent} \ (\Gamma . \ p)))) \\
(\lambda \ hn, \ \Gamma . \ \sim p) \\
(\lambda \ h, \ \Gamma . \ p)
\)
\]

Note: our language is enumerable.

\[
\text{instance of_form : encodable} \ (\text{form} \sigma) := \\
(\text{encode_form} , \ \text{decode_form} \sigma , \ \text{encodek_form})
\]
Maximal consistent extensions

Next, we apply `ext_ctx_with_form` to all formulas
Maximal consistent extensions

Next, we apply `ext_ctx_with_form` to all formulas

```lean
def ext_ctx_to_max_set_at (Γ : ctx σ) : nat → ctx σ :=
| 0    := ext_ctx_with_form Γ 0
| (n+1) := ext_ctx_with_form (ext_ctx_to_max_set_at n) (n+1)
```
Maximal consistent extensions

Next, we apply `ext_ctx_with_form` to all formulas

```lean
def ext_ctx_to_max_set_at (Γ : ctx σ) : nat → ctx σ :=
| 0 := ext_ctx_with_form Γ 0
| (n+1) := ext_ctx_with_form (ext_ctx_to_max_set_at n) (n+1)
```

thus obtaining a maximal set:

```lean
def ext_ctx_to_max_set (Γ : ctx σ) : ctx σ :=
\bigcup_0 (image (λ n, ext_ctx_to_max_set_at Γ n) {n | true})
```
Maximal consistent extensions are well-behaved

Γ is a subset of its maximal extension, \(\text{ext_ctx_to_max_set} \Gamma \).
Maximal consistent extensions are well-behaved

Γ is a subset of its maximal extension, \(\text{ext}_\text{ctx_to_max_set} \Gamma \).

```lean
def ctx_isSubctx_of_max_ext {Γ : ctx σ} : Γ ⊆ ext_ctx_to_max_set Γ :=
begin
  intros _, apply ext_ctx_at_is_sub_max_set,
  apply ctx_is_sub_ext_ctx_at, repeat {assumption}
end
```
Maximal consistent extensions are well-behaved

This extension $\text{ext}_{\text{ctx}} \text{to}_{\text{max_set}} \Gamma$ is indeed maximal.
3 Maximal consistent extensions are well-behaved

This extension ext_ctx_to_max_set Γ is indeed maximal.

\[
\text{def ext_ctx_with_form_of_its_code} \{\Gamma : \text{ctx } \sigma\} \{p : \text{form } \sigma\} : \\
(p \in \text{ext_ctx_with_form } \Gamma (\text{encodable.encode } p)) \\
\lor \\
((\sim p) \in \text{ext_ctx_with_form } \Gamma (\text{encodable.encode } p)) := \\
\begin{align*}
&\text{begin} \\
&\text{unfold ext_ctx_with_form,} \\
&\text{rw (encodable.encodek p),} \\
&\text{simp, induction (prop_decidable _),} \\
&\text{simp, right, apply trivial_mem_left,} \\
&\text{simp, left, apply trivial_mem_left} \\
&\text{end}
\end{align*}
\]
Maximal consistent extensions are well-behaved

```
def ext_ctx_is_max {Γ : ctx σ} (p : form σ) :
(p ∈ ext_ctx_to_max_set Γ) ∨ ((∼p) ∈ ext_ctx_to_max_set Γ) :=
begin
  cases ext_ctx_with_form_of_its_code,
  left,
    apply ext_ctx_at_is_sub_max_set,
    apply ext_ctx_form_is_sub_ext_ctx_at,
    apply no_code_is_zero p, assumption,
  right,
    apply ext_ctx_at_is_sub_max_set,
    apply ext_ctx_form_is_sub_ext_ctx_at,
    apply no_code_is_zero p, assumption,
end
```
Maximal consistent extensions are well-behaved

Maximal consistent extensions preserve consistency

```lean
def max_ext_preserves_consist {Γ : ctx σ} : is_consist Γ → is_consist (ext_ctx_to_max_set Γ) :=
by intros hc nc; cases ext_ctx_lvl nc;
  apply ctx_consist_ext_ctx_at_consist; repeat {assumption}
```
Maximal consistent extensions are well-behaved

Maximal consistent extensions preserve consistency

```lean
def max_ext_preserves_consist \{Γ : ctx σ\} : is_consist Γ → is_consist (ext_ctx_to_max_set Γ) :=
by intros hc nc; cases ext_ctx_lvl nc;
  apply ctx_consist_ext_ctx_at_consist; repeat {assumption}
```

This implies that maximal consistent sets are closed under derivability.

```lean
def max_set_clsd_deriv \{Γ : ctx σ\} \{p : form σ\} (hc : is_consist Γ) :
(ext_ctx_to_max_set Γ ⊢_k p) → p ∈ ext_ctx_to_max_set Γ :=
begin
  intro h,
  cases ext_ctx_is_max p,
  assumption,
  apply false.rec,
  apply max_ext_preserves_consist, assumption,
  apply prf.mp, apply prf.ax, assumption, assumption
end
```
4 The canonical model

The set of all possible worlds \mathcal{W} is the set of all maximal consistent sets.

```lean
def set_max_wrlds (σ : nat) : set (wrld σ) :=
image (λ w, ext_ctx_to_max_set w) {w | is_consist w }
```
The canonical model

The accessibility relation \mathcal{R} is given via the ‘unbox’ operation

```lean
def unbox_form_in_world (w : world σ) : nat → world σ :=
λ n, option.rec_on (encodable.decode (form σ) n) ·
(λ p, form.rec_on p
 (λ v, ·) · (λ q r _ _, ·)
 (λ q _, if (□q) ∈ w then {q} else ·)
)
```

Bruno Bentzen

25 / 33
4 The canonical model

The accessibility relation R is given via the ‘unbox’ operation

```lean
def unbox_form_in_world \((w : \text{world } \sigma) : \text{nat} \to \text{world } \sigma := \lambda n, \text{option.rec_on } (\text{encodable.decode } (\text{form } \sigma) n) \cdot \lambda p, \text{form.rec_on } p \cdot \lambda v, \cdot \cdot \lambda q r, \cdot \cdot \lambda q, \text{if } (\Box q) \in w \text{ then } \{q\} \text{ else } \cdot \)

def unbox_world \((w : \text{world } \sigma) : \text{world } \sigma := \bigcup_0 (\text{image } (\lambda n, \text{unbox_form_in_world } w n) \{n \mid \text{true}\})
```
The canonical model

The accessibility relation \mathcal{R} is given via the ‘unbox’ operation

```lean
def unbox_form_in_wrld (w : world σ) : nat → world σ :=
λ n, option.rec_on (encodable.decode (form σ) n) ·
(λ p, form.rec_on p
  (λ v, ·) · (λ q r _ _, ·)
  (λ q _, if (□q) ∈ w then {q} else ·))

def unbox_wrld (w : world σ) : world σ :=
Union₀ (image (λ n, unbox_form_in_wrld w n) {n | true})

noncomputable def worlds_to_access : world σ → world σ → bool :=
assume w v, if (unbox_wrld w ⊇ v) then tt else ff
```
The canonical model

In particular,

```lean
def in_unbox_box_in_wrld {p : form σ} {w : wrld σ} :
  p ∈ unbox_wrld w ↔ (□p) ∈ w :=
begin
  apply iff.intro,
  intro h, cases h, cases h_h,
  cases h_h_w, cases h_h_w_h, cases h_h_w_h_right,
  revert h_h, induction (encodable.decode (form σ) _),
  simp, intro, apply false.rec, assumption,
  simp, induction val,
  repeat {simp, intro h, apply false.rec, assumption},
  simp, unfold ite, induction (prop_decidable _),
  simp, intro, apply false.rec, assumption,
  simp, intro h, cases h, assumption,
  intro h, unfold unbox_wrld image sUnion,
  constructor, constructor, constructor, constructor,
  trivial, reflexivity,
  exact encodable.encode (□p),
  unfold unbox_form_in_wrld ite,
  rw (encodable.encodek □p),
  simp, induction p,
  repeat {
    induction prop_decidable _,
    contradiction, simp,
  },
end
```
4 The canonical model

Useful corollaries are:

```lean
def not_box_in_world_unbox_not_prvble {p : form σ} {w : world σ} (hw : w ∈ set_max_worlds σ) :
(¬ □ p) ∈ w → (unbox_world w ⊬ k p) :=
begin
  intros h hnp,
  apply all_worlds_are_consistent hw,
  apply prf.mp,
  apply prf.ax h,
  apply prf.ax (unbox_prvble_box_in_world hw hnp)
end

def not_box_in_world_to_consist_not {p : form σ} {w : world σ} (hw : w ∈ set_max_worlds σ) :
(¬ □ p) ∈ w → is_consistent (unbox_world w . (¬ p)) :=
λ hn, not_prvb_to_neg_consist (not_box_in_world_unbox_not_prvble hw hn)
```
The canonical model

The valuation function ν can be defined as follows:

```lean
noncomputable def worlds_to_val : var $\sigma$ $\rightarrow$ world $\sigma$ $\rightarrow$ bool :=
assume p w, if w $\in$ set_max_worlds $\sigma$ $\land$ (#p) $\in$ w then tt else ff
```
The canonical model

The valuation function v can be defined as follows:

```lean
noncomputable def worlds_to_val : var σ → world σ → bool :=
assume p w, if w ∈ set_max_worlds σ ∧ (#p) ∈ w then tt else ff
```

By putting all the pieces together we have:

```lean
noncomputable def canonical_model : @model σ :=
begin
  apply model.mk,
  apply set_max_worlds,
  apply worlds_to_access,
  apply worlds_to_val
end
```
The canonical model

Now we show that truth is membership in the canonical model

```lean
def tt_iff_in_wrld {p : form σ} :
  ∀ (w : wrld σ) (wm : w ∈ set_max_wrlds σ), (canonical_model [[p]] w) = tt ↔ p ∈ w :=
begin
  induction p,
  sorry, sorry, sorry, /--- we will not discuss the atom, bot, and impl cases /---/
  unfold form_tt_in_wrld, simp, intros, --- box
  apply iff.intro,
  intro h, cases all_wrlds_are_max wm □p.a, assumption,
  apply false.rec, apply max_ext_preserves_consist,
  apply not_box_in_wrld_to_consist_not wm h.1,
  apply prf.mp, apply prf.ax,
  apply ctx_is_subctx_of_max_ext, exact trivial_mem_left,
  apply prf.ax, apply (p.ih _ (max_cons_set_in_all_wrlds
  (not_box_in_wrld_to_consist_not wm h.1))).1,
  apply h, assumption,
  exact max_cons_set_in_all_wrlds
  (not_box_in_wrld_to_consist_not wm h.1),
  unfold canonical_model wrlds_to_access, simp,
  intros p pm, apply ctx_is_subctx_of_max_ext,
  apply mem_ext_cons_left, assumption,
  intros h v, unfold canonical_model wrlds_to_access,
  simp, intros ww vv rwv, apply (p.ih _ vv).2,
  apply rwv, apply in_unbox_box_in_wrld.2, assumption
end
```
4 The canonical model

Informally we have:

\[(IH) (\text{canonical_model}[[p]]_w) = tt \leftrightarrow p \in w\]
The canonical model

Informally we have:

\[(IH) \ (\text{canonical_model}[[p]]_w) = \text{tt} \iff p \in w\]

→ Assume that \((\text{canonical_model}[[\Box p]]_w) = \text{tt}\) and that \(\neg \Box p \in w\).
The canonical model

Informally we have:

\[(\text{IH}) \ (\text{canonical_model}[[p]]w) = tt \iff p \in w\]

→ Assume that \((\text{canonical_model}[[\Box p]]w) = tt\) and that \(\neg \Box p \in w\).

But then \(\text{unbox_wrld} \ w \cdot (\neg p)\) is consistent and can be extended to a possible world.
The canonical model

Informally we have:

(\text{IH}) \ (\text{canonical_model}[[p]]w) = tt \leftrightarrow p \in w

→ Assume that (\text{canonical_model}[[\Box p]]w) = tt and that \sim \Box p \in w.
But then unbox_wrl1d w.(\sim p) is consistent and can be extended to a possible world. It is accessible to w because unbox_wrl1d w \subseteq \text{ext_ctx_to_max_set}(\text{unbox_wrl1d} w, (\sim p)), so p should be true at w.
The canonical model

Informally we have:

$$(\text{IH}) \ (\text{canonical} _ \text{model}[[p]]w) = tt \leftrightarrow p \in w$$

$$\Rightarrow$$ Assume that $$(\text{canonical} _ \text{model}[[\Box p]]w) = tt$$ and that $$\sim \Box p \in w$$. But then unbox _ wrld _ w $$\sim p$$ is consistent and can be extended to a possible world. It is accessible to _ w because unbox _ wrld _ w \subseteq \text{ext} _ \text{ctx} _ \text{to} _ \text{max} _ \text{set}(\text{unbox} _ \text{wrld} _ w, (\sim p))$$, so _ p should be true at _ w. But _ p \notin \text{ext} _ \text{ctx} _ \text{to} _ \text{max} _ \text{set}(\text{unbox} _ \text{wrld} _ w, (\sim p))$$ because it is consistent.
4 The canonical model

Informally we have:

\[(\text{IH}) \quad (\text{canonical_model}[[p]]w) = \text{tt} \iff p \in w\]

→ Assume that \((\text{canonical_model}[[\Box p]]w) = \text{tt}\) and that \(\sim \Box p \in w\). But then \text{unbox_wrld} w.(\sim p) is consistent and can be extended to a possible world. It is accessible to \(w\) because \text{unbox_wrld} \(w \subseteq \text{ext_ctx_to_max_set}(\text{unbox_wrld} w, (\sim p))\), so \(p\) should be true at \(w\). But \(p \notin \text{ext_ctx_to_max_set}(\text{unbox_wrld} w, (\sim p))\) because it is consistent.

← Assume that \(\Box p \in w\). Given \(v \in M.\text{wrld}\) and \(M.\text{access} w v = \text{tt}\), we have to show that \((\text{canonical_model}[[p]]v) = \text{tt}\). By our IH, it suffices to show that \(p \in v\), but \text{unbox_wrld} \(w \subseteq v\) and \(\Box p \in w\).
The completeness proof

We complete the proof by showing that the canonical model falsifies p at the possible world $\text{ext_ctx_to_max_set}((\Gamma, \sim p))$.

```lean
def ctx_is_tt (Γ : ctx σ) (wm : Γ ∈ set_max_worlds σ) :
(cannotical_model [[Γ]] Γ) = tt :=
mem_tt_to_ctx_tt Γ (λ p pm, (tt_iff_in_world _ wm).2 pm)

def compltnss {Γ : ctx σ} {p : form σ} :
(Γ ⊨_k p) → (Γ ⊢_k p) :=
begin
  apply not_contrap, intros nhp hp, cases hp,
  have c : is_consist (Γ ⊨ p) := not_prvb_to_neg_consist nhp,
  apply absurd,
  apply hp,
  apply cons_ctx_tt_to_ctx_tt,
  apply ctx_tt_to_subctx_tt,
  apply ctx_is_tt (ext_ctx_to_max_set (Γ, ~ p)),
  apply max_cons_set_in_all_worlds c,
  apply ctx_is_subctx_of_max_ext,
  simp, apply neg_tt_iff_ff.1, apply and.elim_right, apply cons_ctx_tt_iff_and.1,
  apply ctx_tt_to_subctx_tt,
  apply ctx_is_tt (ext_ctx_to_max_set (Γ, ~ p)),
  apply max_cons_set_in_all_worlds c,
  apply ctx_is_subctx_of_max_ext,
end
```

Bruno Bentzen
Thank you!
Bruno Bentzen. Metalogic, an implementation of the metatheorems of some logics in Lean. URL: https://github.com/bbentzen/metalogic/. Online.