
So what are hammers 
(and counterexample generators)
good for?

Jasmin Christian Blanchette

10

4. Lean Forward

1. Sledgehammer

3. Nunchaku

2. Nitpick

Talk outline

1. Sledgehammer
2. Automatic proof search  
2. for Isabelle/HOL

Joint work with 
Sascha Böhme, Jia Meng, Tobias Nipkow, 
Larry Paulson, Makarius Wenzel, and many others

Does there exist a function f from reals to reals such that  
for all x and y, f(x + y2) − f(x) ≥ y?

let lemma = prove
(`!f:real->real. ~(!x y. f(x + y * y) - f(x) >= y)`,
 REWRITE_TAC[real_ge] THEN REPEAT STRIP_TAC THEN
 SUBGOAL_THEN `!n x y. &n * y <= f(x + &n * y * y) - f(x)` MP_TAC THENL
 [MATCH_MP_TAC num_INDUCTION THEN SIMP_TAC[REAL_MUL_LZERO; REAL_ADD_RID] THEN
 REWRITE_TAC[REAL_SUB_REFL; REAL_LE_REFL; GSYM REAL_OF_NUM_SUC] THEN
 GEN_TAC THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
 FIRST_X_ASSUM(MP_TAC o SPECL [`x + &n * y * y`; `y:real`]) THEN
 SIMP_TAC[REAL_ADD_ASSOC; REAL_ADD_RDISTRIB; REAL_MUL_LID] THEN
 REAL_ARITH_TAC;
 X_CHOOSE_TAC `m:num` (SPEC `f(&1) - f(&0):real` REAL_ARCH_SIMPLE) THEN
 DISCH_THEN(MP_TAC o SPECL [`SUC m EXP 2`; `&0`; `inv(&(SUC m))`]) THEN
 REWRITE_TAC[REAL_ADD_LID; GSYM REAL_OF_NUM_SUC; GSYM REAL_OF_NUM_POW] THEN
 REWRITE_TAC[REAL_FIELD `(&m + &1) pow 2 * inv(&m + &1) = &m + &1`;
 REAL_FIELD `(&m + &1) pow 2 * inv(&m + &1) * inv(&m + &1) = &1`] THEN
 ASM_REAL_ARITH_TAC]);;

John Harrison

Does there exist a function f from reals to reals such that  
for all x and y, f(x + y2) − f(x) ≥ y?

[1] f(x + y2) − f(x) ≥ y for any x and y (given)

[2] f(x + n y2) − f(x) ≥ n y for any x, y, and natural number n
 (by an easy induction using [1] for the step case)

[3] f(1) − f(0) ≥ m + 1 for any natural number m
 (set n = (m + 1)2, x = 0, y = 1/(m + 1) in [2])

[4] Contradiction of [3] and the Archimedean property
 of the reals

John Harrison

intermediate 
properties

generated
automatically

manual

Sledgehammer has certainly transformed the way
Isabelle is taught. There are two reasons for this:
• Because it identifies relevant facts, users no

longer need to memorise lemma libraries.
• Because it works in harmony with Isar structured

proofs, users no longer need to learn many 
low-level tactics.Larry Paulson

vs.

well suited for
large formalizations

but
require intensive
manual labor

fully automatic

but
no proof 

management

Sledge-
hammer

Proof assistants Automatic provers

h A

�
=Isa

be
lle

`

_

Isa
be

lle Vampire

� �

�
=Isa

be
lle

�

�

HOL

select lemmas +
translate to FOL

reconstruct proof

superposition 

SMT

superposition  SMT

refutational

resolution rule

term ordering

equality reasoning

 
E, SPASS, Vampire, …

redundancy criterion

refutational

SAT solver

+ congruence closure

+ quantifier instantiation

 
CVC4, veriT, Yices, Z3, …

+ other theories (e.g. LIA, LRA)

Upon success, 
proofs are translated to Isabelle

one-line detailed (Isar)

lemma "length (tl xs) ≤ length xs"
by (metis diff_le_self length_tl)

⊕ usually fast and reliable

⊕ lightweight

⊖ cryptic

⊖ sometimes slow (several seconds)

⊖ often cannot deal with theories

proof method lemmas

One-line proofs

 
 
 
 
 
 
 
lemma "length (tl xs) ≤ length xs"
proof -
 have "⋀x1 x2. (x1∷nat) - x2 - x1 = 0 - x2"
 by (metis comm_monoid_diff_class.diff_cancel diff_right_commute)
 hence "length xs - 1 - length xs = 0"
 by (metis zero_diff)
 hence "length xs - 1 ≤ length xs"
 by (metis diff_is_0_eq)
 thus "length (tl xs) ≤ length xs"
 by (metis length_tl)
qed

⊕ faster than one-liners

⊕ higher reconstruction success rate

⊕ self-explanatory?

⊖ technically more challenging 
⊖ ugly?

Detailed (Isar) proofs

I have recently been working on a new development.
Sledgehammer has found some simply incredible
proofs. I would estimate the improvement in
productivity as a factor of at least three, maybe five.

Sledgehammers … have led to visible success. Fully
automated procedures can prove … 47% of the HOL

Light/Flyspeck libraries, with comparable rates in
Isabelle. These automation rates represent an

enormous saving in human labor.

Developing proofs without Sledgehammer is
like walking as opposed to running.

Sledgehammer really works

Larry Paulson

Thomas Hales

Tobias Nipkow

Isabelle’s pros and cons, 
according to my students

11.5 Sledgehammer
 4 Nitpick
 4 Isar
 2.5 automation
 2 IDE
 1 Quickcheck
 1 set theory
 1 schematic variables
 1 structural induction
 1 classical logic
 1 function induction
 1 infix operators
 1 "qed auto"

⊕ 5 goal/assumption handling
4 weak logic (props as types, types as terms)
3 Sledgehammer on lists, HO goals, or induction
1 automatic induction
1 Sledgehammer-generated Isar
1 arithmetic
1 Isar
1 opaque proofs
1 double quotes around inner syntax
1 underdeveloped "fset"
1 proof reuse
1 no hnf for statements, not even definitions
1 guaranteed computability
1 forward "apply" in assumptions (drule?)
1 error messages in inner syntax
1 ltac (Eisbach?)
1 cannot click on fun to see definition (?)
1 tooltips for built-in functions etc.

⊖

Sledgehammer's main weaknesses

⊖ Higher-order "lost in translation"

⊖ No induction

⊖ Explosive search space

m a t r y o s h k a

y

λm a t r y o s h k a

2. Nitpick
1. A (counter)model finder 
1. for Isabelle/HOL

Joint work with 
Alexander Krauss and Tobias Nipkow

Architecture

HOL
FORL

SAT

Isabelle Nitpick .Kodkod.. .SAT solver

Translation

fixed finite cardinalities: 
try all cards. ≤ K for base types

τ1 # ⋅ ⋅ ⋅ # τn # bool A1 × ⋅ ⋅ ⋅ × An⟼

τ1 # ⋅ ⋅ ⋅ # τn # τ A1 × ⋅ ⋅ ⋅ × An × A
+	constraint

⟼

first-order

σ # τ A × ⋅ ⋅ ⋅ × A

|σ|	times{⟼
higher-order

?

datatypes codatatypes

inductive preds. coinductive preds.

Con

3

Nil

Con

0

Con

2

Con

3

Nil

Con

0

Con

2

p = F p

p0 = (λx. False)
pi+1 = F pi

p = F p

p0 = (λx. True)
pi+1 = F pi

Translation

3. Nunchaku
2. A modular model finder 
2. for higher-order logic

Ongoing joint work with 
Simon Cruanes, Pablo Le Hénaff, and Andrew Reynolds

multiple frontends
Isabelle/HOL, Lean, Coq, TLAPS, …

multiple backends
CVC4, Kodkod, Paradox, SMBC, Leon, Vampire, …

more precision
by better approximations

more efficiency
by using better backends and 
by letting them enumerate cardinalities

Simplified translation pipeline

1. Monomorphize
2. Specialize
3. Polarize
4. Encode (co)inductive predicates
5. Encode (co)recursive functions
6. Encode higher-order functions

Actual translation pipeline

$ nunchaku --print-pipeline
Pipeline:
| ty_infer ➜ convert ➜ skolem ➜
| fork {
| | mono ➜ elim_infinite ➜ elim_copy ➜ elim_multi_eqns ➜ specialize ➜ elim_match ➜ elim_codata ➜
| | polarize ➜ unroll ➜ skolem ➜ elim_ind_pred ➜ elim_quant ➜ lift_undefined ➜ model_clean ➜ 
| | close {smbc ➜ id}
| | mono ➜ elim_infinite ➜ elim_copy ➜ elim_multi_eqns ➜ specialize ➜ elim_match ➜
| | fork {
| | | elim_codata ➜ polarize ➜ unroll ➜ skolem ➜ elim_ind_pred ➜ elim_data ➜ lambda_lift ➜ elim_hof ➜
| | | elim_rec ➜ intro_guards ➜ elim_prop_args ➜
| | | fork {
| | | | elim_types ➜ model_clean ➜ close {to_fo ➜ elim_ite ➜ conv_tptp ➜ paradox ➜ id}
| | | | model_clean ➜ close {to_fo ➜ fo_to_rel ➜ kodkod ➜ id}
| | | }
| | | polarize ➜ unroll ➜ skolem ➜ elim_ind_pred ➜ lambda_lift ➜ elim_hof ➜
| | | elim_rec ➜ intro_guards ➜ model_clean ➜ close {to_fo ➜ flatten {cvc4 ➜ id}}
| | }
| }

OCaml for translation pipeline

. . .

4. Lean Forward
2. Usable proofs and  
2. computations for  
2. number theorists

Future joint work with  
Sander Dahmen, Gabriel Ebner, Johannes Hölzl, 
Rob Lewis, Assia Mahboubi, Freek Wiedijk, 
and many others

Vision

Develop math libraries and automation 
 (e.g. basic algebraic number theory)

Develop tools, integrations 
 (e.g. Rob Lewis’s Mathematica bridge, Nunchaku)

Prove modern theorems 
 (motivated by Sander Dahmen et al.’s  
 (research and interests)

Develop Lean itself (C++)

high-level

low-level

So what are hammers 
(and counterexample generators)
good for?

Jasmin Christian Blanchette

