
Embedding specialized proof languages into Lean
A Case Study

Simon Hudon

Department of Philosophy and
Department of Mathematical Sciences

Carnegie Mellon University

work done in the context of my PhD at York University

January 2019

1

Dependent Type Theory

Dependent type theory is a general purpose reasoning framework
It is useful for reasoning about:

• algebra
• analysis
• functional programs and data structures
• theory of computation
• etc
• etc

2

Dependent Type Theory

Dependent type theory is a general purpose reasoning framework
It is useful for reasoning about:

• algebra
• analysis
• functional programs and data structures
• theory of computation
• etc
• etc

2

Dependent Type Theory

Dependent type theory is a general purpose reasoning framework
It is useful for reasoning about:

• algebra
• analysis
• functional programs and data structures
• theory of computation
• etc
• etc

2

Dependent Type Theory

Dependent type theory is a general purpose reasoning framework
It is useful for reasoning about:

• algebra
• analysis
• functional programs and data structures
• theory of computation
• etc
• etc

2

Dependent Type Theory

Dependent type theory is a general purpose reasoning framework
It is useful for reasoning about:

• algebra
• analysis
• functional programs and data structures
• theory of computation
• etc
• etc

2

Dependent Type Theory

Dependent type theory is a general purpose reasoning framework
It is useful for reasoning about:

• algebra
• analysis
• functional programs and data structures
• theory of computation
• etc
• etc

2

Dependent Type Theory

Dependent type theory is a general purpose reasoning framework
It is useful for reasoning about:

• algebra
• analysis
• functional programs and data structures
• theory of computation
• etc
• etc

2

Dependent Type Theory

Dependent type theory is a general purpose reasoning framework
It is useful for reasoning about:

• algebra
• analysis
• functional programs and data structures
• theory of computation
• etc
• etc

2

Specialized Logics

Specialized languages and logics are useful tools for emphasizing
specific aspects in models
Examples:

• hoare logic — input / output relation for imperative programs
• separation logic — resource consumption in programs
• temporal logic — evolution of the state of a computation over time
• communicating sequential processes (CSP) — interactions between

a set of processes

3

Specialized Logics

Specialized languages and logics are useful tools for emphasizing
specific aspects in models
Examples:

• hoare logic — input / output relation for imperative programs
• separation logic — resource consumption in programs
• temporal logic — evolution of the state of a computation over time
• communicating sequential processes (CSP) — interactions between

a set of processes

3

Specialized Logics

Specialized languages and logics are useful tools for emphasizing
specific aspects in models
Examples:

• hoare logic — input / output relation for imperative programs
• separation logic — resource consumption in programs
• temporal logic — evolution of the state of a computation over time
• communicating sequential processes (CSP) — interactions between

a set of processes

3

Specialized Logics

Specialized languages and logics are useful tools for emphasizing
specific aspects in models
Examples:

• hoare logic — input / output relation for imperative programs
• separation logic — resource consumption in programs
• temporal logic — evolution of the state of a computation over time
• communicating sequential processes (CSP) — interactions between

a set of processes

3

Specialized Logics

Specialized languages and logics are useful tools for emphasizing
specific aspects in models
Examples:

• hoare logic — input / output relation for imperative programs
• separation logic — resource consumption in programs
• temporal logic — evolution of the state of a computation over time
• communicating sequential processes (CSP) — interactions between

a set of processes

3

How to ...

The many possible approaches to building tools for a logic:
• build specialized provers / tools

pro: lots of freedom in deciding how the provers will work
cons: demands a lot of expertise other than domain expertise

• write a deep embedding in a proof assistant
pro: can reuse some of the facilities of the prover

cons: many features of the prover must be modelled in its own logic
(hard)

• write a shallow embedding in a proof assistant
pro: can reuse more support from the prover

cons: proofs become specific to chosen encoding

4

How to ...

The many possible approaches to building tools for a logic:
• build specialized provers / tools

pro: lots of freedom in deciding how the provers will work
cons: demands a lot of expertise other than domain expertise

• write a deep embedding in a proof assistant
pro: can reuse some of the facilities of the prover

cons: many features of the prover must be modelled in its own logic
(hard)

• write a shallow embedding in a proof assistant
pro: can reuse more support from the prover

cons: proofs become specific to chosen encoding

4

How to ...

The many possible approaches to building tools for a logic:
• build specialized provers / tools

pro: lots of freedom in deciding how the provers will work
cons: demands a lot of expertise other than domain expertise

• write a deep embedding in a proof assistant
pro: can reuse some of the facilities of the prover

cons: many features of the prover must be modelled in its own logic
(hard)

• write a shallow embedding in a proof assistant
pro: can reuse more support from the prover

cons: proofs become specific to chosen encoding

4

How to ...

The many possible approaches to building tools for a logic:
• build specialized provers / tools

pro: lots of freedom in deciding how the provers will work
cons: demands a lot of expertise other than domain expertise

• write a deep embedding in a proof assistant
pro: can reuse some of the facilities of the prover

cons: many features of the prover must be modelled in its own logic
(hard)

• write a shallow embedding in a proof assistant
pro: can reuse more support from the prover

cons: proofs become specific to chosen encoding

4

How to ...

The many possible approaches to building tools for a logic:
• build specialized provers / tools

pro: lots of freedom in deciding how the provers will work
cons: demands a lot of expertise other than domain expertise

• write a deep embedding in a proof assistant
pro: can reuse some of the facilities of the prover

cons: many features of the prover must be modelled in its own logic
(hard)

• write a shallow embedding in a proof assistant
pro: can reuse more support from the prover

cons: proofs become specific to chosen encoding

4

How to ...

The many possible approaches to building tools for a logic:
• build specialized provers / tools

pro: lots of freedom in deciding how the provers will work
cons: demands a lot of expertise other than domain expertise

• write a deep embedding in a proof assistant
pro: can reuse some of the facilities of the prover

cons: many features of the prover must be modelled in its own logic
(hard)

• write a shallow embedding in a proof assistant
pro: can reuse more support from the prover

cons: proofs become specific to chosen encoding

4

How to ...

The many possible approaches to building tools for a logic:
• build specialized provers / tools

pro: lots of freedom in deciding how the provers will work
cons: demands a lot of expertise other than domain expertise

• write a deep embedding in a proof assistant
pro: can reuse some of the facilities of the prover

cons: many features of the prover must be modelled in its own logic
(hard)

• write a shallow embedding in a proof assistant
pro: can reuse more support from the prover

cons: proofs become specific to chosen encoding

4

How to ...

The many possible approaches to building tools for a logic:
• build specialized provers / tools

pro: lots of freedom in deciding how the provers will work
cons: demands a lot of expertise other than domain expertise

• write a deep embedding in a proof assistant
pro: can reuse some of the facilities of the prover

cons: many features of the prover must be modelled in its own logic
(hard)

• write a shallow embedding in a proof assistant
pro: can reuse more support from the prover

cons: proofs become specific to chosen encoding

4

How to ...

The many possible approaches to building tools for a logic:
• build specialized provers / tools

pro: lots of freedom in deciding how the provers will work
cons: demands a lot of expertise other than domain expertise

• write a deep embedding in a proof assistant
pro: can reuse some of the facilities of the prover

cons: many features of the prover must be modelled in its own logic
(hard)

• write a shallow embedding in a proof assistant
pro: can reuse more support from the prover

cons: proofs become specific to chosen encoding

4

How to ...

The many possible approaches to building tools for a logic:
• build specialized provers / tools

pro: lots of freedom in deciding how the provers will work
cons: demands a lot of expertise other than domain expertise

• write a deep embedding in a proof assistant
pro: can reuse some of the facilities of the prover

cons: many features of the prover must be modelled in its own logic
(hard)

• write a shallow embedding in a proof assistant
pro: can reuse more support from the prover

cons: proofs become specific to chosen encoding

4

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

• declare special notation on top of a deep or shallow
embedding
pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic

• override tactic notation (thanks to Lean!)
pro: can allow the user to reason in terms of the logic rather than

in terms of its encoding without implementing a new prover
from scratch

con: —
• define top-level syntax (thanks to Lean!)

pro: can embed a complete language inside a prover
con: too awesome

5

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

• declare special notation on top of a deep or shallow
embedding
pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic

• override tactic notation (thanks to Lean!)
pro: can allow the user to reason in terms of the logic rather than

in terms of its encoding without implementing a new prover
from scratch

con: —
• define top-level syntax (thanks to Lean!)

pro: can embed a complete language inside a prover
con: too awesome

5

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

• declare special notation on top of a deep or shallow
embedding
pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic

• override tactic notation (thanks to Lean!)
pro: can allow the user to reason in terms of the logic rather than

in terms of its encoding without implementing a new prover
from scratch

con: —
• define top-level syntax (thanks to Lean!)

pro: can embed a complete language inside a prover
con: too awesome

5

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

• declare special notation on top of a deep or shallow
embedding
pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic

• override tactic notation (thanks to Lean!)
pro: can allow the user to reason in terms of the logic rather than

in terms of its encoding without implementing a new prover
from scratch

con: —
• define top-level syntax (thanks to Lean!)

pro: can embed a complete language inside a prover
con: too awesome

5

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

• declare special notation on top of a deep or shallow
embedding
pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic

• override tactic notation (thanks to Lean!)
pro: can allow the user to reason in terms of the logic rather than

in terms of its encoding without implementing a new prover
from scratch

con: —
• define top-level syntax (thanks to Lean!)

pro: can embed a complete language inside a prover
con: too awesome

5

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

• declare special notation on top of a deep or shallow
embedding
pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic

• override tactic notation (thanks to Lean!)
pro: can allow the user to reason in terms of the logic rather than

in terms of its encoding without implementing a new prover
from scratch

con: —
• define top-level syntax (thanks to Lean!)

pro: can embed a complete language inside a prover
con: too awesome

5

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

• declare special notation on top of a deep or shallow
embedding
pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic

• override tactic notation (thanks to Lean!)
pro: can allow the user to reason in terms of the logic rather than

in terms of its encoding without implementing a new prover
from scratch

con: —
• define top-level syntax (thanks to Lean!)

pro: can embed a complete language inside a prover
con: too awesome

5

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

• declare special notation on top of a deep or shallow
embedding
pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic

• override tactic notation (thanks to Lean!)
pro: can allow the user to reason in terms of the logic rather than

in terms of its encoding without implementing a new prover
from scratch

con: —
• define top-level syntax (thanks to Lean!)

pro: can embed a complete language inside a prover
con: too awesome

5

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

• declare special notation on top of a deep or shallow
embedding
pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic

• override tactic notation (thanks to Lean!)
pro: can allow the user to reason in terms of the logic rather than

in terms of its encoding without implementing a new prover
from scratch

con: —
• define top-level syntax (thanks to Lean!)

pro: can embed a complete language inside a prover
con: too awesome

5

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

• declare special notation on top of a deep or shallow
embedding
pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic

• override tactic notation (thanks to Lean!)
pro: can allow the user to reason in terms of the logic rather than

in terms of its encoding without implementing a new prover
from scratch

con: —
• define top-level syntax (thanks to Lean!)

pro: can embed a complete language inside a prover
con: too awesome

5

Chosen approach

• write a shallow embedding in a proof assistant
• declare special notation
• override tactic notation

6

Chosen approach

• write a shallow embedding in a proof assistant
• declare special notation
• override tactic notation

6

Chosen approach

• write a shallow embedding in a proof assistant
• declare special notation
• override tactic notation

6

What is temporal logic?

Temporal logic makes time ubiquitous and implicit
• superset of first order logic
• add two modalities: ♦ and �
• ♦P, with P, a proposition means “at some point in the

future, P will hold”
• �P, with P, a proposition means “from now on, P holds”

7

What is temporal logic?

Temporal logic makes time ubiquitous and implicit
• superset of first order logic
• add two modalities: ♦ and �
• ♦P, with P, a proposition means “at some point in the

future, P will hold”
• �P, with P, a proposition means “from now on, P holds”

7

What is temporal logic?

Temporal logic makes time ubiquitous and implicit
• superset of first order logic
• add two modalities: ♦ and �
• ♦P, with P, a proposition means “at some point in the

future, P will hold”
• �P, with P, a proposition means “from now on, P holds”

7

What is temporal logic?

Temporal logic makes time ubiquitous and implicit
• superset of first order logic
• add two modalities: ♦ and �
• ♦P, with P, a proposition means “at some point in the

future, P will hold”
• �P, with P, a proposition means “from now on, P holds”

7

What is temporal logic?

Temporal logic makes time ubiquitous and implicit
• superset of first order logic
• add two modalities: ♦ and �
• ♦P, with P, a proposition means “at some point in the

future, P will hold”
• �P, with P, a proposition means “from now on, P holds”

7

What is temporal logic good for?

Use: Specifying the desired behavior of concurrent / distributed
programs under development.

Init , x = 0 ∧ y = 0

Next , x ′ = x + 1 ∧ y ′ = y − 1
∨ x ′ = x − 2 ∧ y ′ = y + 2

Spec , Init ∧�Next
Theorem : Spec ⇒ �(x + y = 0)

8

What is temporal logic good for?

Use: Specifying the desired behavior of concurrent / distributed
programs under development.

Init , x = 0 ∧ y = 0

Next , x ′ = x + 1 ∧ y ′ = y − 1
∨ x ′ = x − 2 ∧ y ′ = y + 2

Spec , Init ∧�Next
Theorem : Spec ⇒ �(x + y = 0)

8

What is temporal logic good for?

Use: Specifying the desired behavior of concurrent / distributed
programs under development.

Init , x = 0 ∧ y = 0

Next , x ′ = x + 1 ∧ y ′ = y − 1
∨ x ′ = x − 2 ∧ y ′ = y + 2

Spec , Init ∧�Next
Theorem : Spec ⇒ �(x + y = 0)

8

What is temporal logic good for?

Use: Specifying the desired behavior of concurrent / distributed
programs under development.

Init , x = 0 ∧ y = 0

Next , x ′ = x + 1 ∧ y ′ = y − 1
∨ x ′ = x − 2 ∧ y ′ = y + 2

Spec , Init ∧�Next
Theorem : Spec ⇒ �(x + y = 0)

8

What is temporal logic good for?

Use: Specifying the desired behavior of concurrent / distributed
programs under development.

Init , x = 0 ∧ y = 0

Next , x ′ = x + 1 ∧ y ′ = y − 1
∨ x ′ = x − 2 ∧ y ′ = y + 2

Spec , Init ∧�Next
Theorem : Spec ⇒ �(x + y = 0)

8

Shallow embedding

def tprop := N → Prop -- N is a discrete time

def entails (p q : tprop) : Prop :=
∀ i : N, p i → q i
infix ` ` `:53 := judgement -- \|-

def eventually (p : tprop) : tprop :=
λ i : N, ∃ j : N, p (i+j)
prefix `♦`:95 := eventually -- \di

def henceforth (p : tprop) : tprop :=
λ i : N, ∀ j : N, p (i+j)
prefix `�`:95 := henceforth -- \sqw

9

More notation

def t_and (p q : tprop) : tprop :=
λ i : N, p i ∧ q i
prefix `

∧
`:95 := t_and −− \And, not \and

def t_or (p q : tprop) : tprop :=
λ i : N, p i ∨ q i
prefix `

∨
`:95 := t_or −− \Or, not \or

def t_all {α} (P : α → tprop) : tprop :=
λ t : N, ∀ x : α, P x t
notation `∀∀` binders `, ` r:(scoped P, t_all P) := r

10

Example: Proposition

p : α → tprop,
q : α → tprop
` (∀∀ x : α, p x

∧
q x) : tprop

11

Example: Proof
Available to step through at:
https://github.com/unitb/temporal-logic/blob/
amsterdam-talk/src/temporal_logic/lemmas.lean#L469-L490

protected lemma leads_to_cancellation'
{p q b r : tpred} {t : N}
(P0 : t |= p q

∨
b)

(P1 : t |= q r)
: t |= p r

∨
b :=

begin
intros ∆ h,
have := P0 _ h, clear h,
cases this with ∆' h,
cases h with h h,
{ rw add_assoc at h,

specialize P1 _ h,
cases P1 with ∆'' h, rw ← add_assoc at h,
existsi (∆' + ∆''), rw ← add_assoc,
left, apply h },

{ existsi ∆', right, assumption },
end

12

https://github.com/unitb/temporal-logic/blob/amsterdam-talk/src/temporal_logic/lemmas.lean#L469-L490
https://github.com/unitb/temporal-logic/blob/amsterdam-talk/src/temporal_logic/lemmas.lean#L469-L490

Criticism

Let’s step through a small part of the proof:

−− . . .
{ rw add_assoc at h,

specialize P1 _ h,
cases P1 with ∆'' h,
rw ← add_assoc at h,
existsi (∆' + ∆''),
rw ← add_assoc,
left, apply h },
−− . . .

Proof Goal

13

Criticism

Let’s step through a small part of the proof:

−− . . .
{ rw add_assoc at h,

specialize P1 _ h,
cases P1 with ∆'' h,
rw ← add_assoc at h,
existsi (∆' + ∆''), C
rw ← add_assoc,
left, apply h },
−− . . .

Proof Goal

t ∆ ∆' : N,
h : t + (∆ + ∆') |= q,
∆'' : N,
h : t + ∆ + ∆' + ∆'' |= r
` t + ∆ |= ♦(r

∨
b)

14

Criticism

Let’s step through a small part of the proof:

−− . . .
{ rw add_assoc at h,

specialize P1 _ h,
cases P1 with ∆'' h,
rw ← add_assoc at h,
existsi (∆' + ∆''),
rw ← add_assoc, C
left, apply h },
−− . . .

Proof Goal

t ∆ ∆' : N,
h : t + (∆ + ∆') |= q,
∆'' : N,
h : t + ∆ + ∆' + ∆'' |= r
` t + ∆ + (∆' + ∆'') |= r

∨
b

15

Criticism

Let’s step through a small part of the proof:

−− . . .
{ rw add_assoc at h,

specialize P1 _ h,
cases P1 with ∆'' h,
rw ← add_assoc at h,
existsi (∆' + ∆''),
rw ← add_assoc,
left, apply h }, C
−− . . .

Proof Goal

t ∆ ∆' : N,
h : t + (∆ + ∆') |= q,
∆'' : N,
h : t + ∆ + ∆' + ∆'' |= r
` t + ∆ + ∆' + ∆'' |= r

∨
b

16

Improvement
https://github.com/unitb/temporal-logic/blob/
amsterdam-talk/src/temporal_logic/lemmas.lean#L454-L467

protected lemma leads_to_cancellation {p q b r : tpred}
(P0 : Γ ` p q

∨
b)

(P1 : Γ ` q r) :
Γ ` p r

∨
b :=

begin [temporal]
unfold tl_leads_to in *,
henceforth,
intros h,
have := P0 h, clear h,
eventually this,
rw [eventually_or],
cases this with h h,
{ left, apply P1 h },
{ right, assumption },

end

17

https://github.com/unitb/temporal-logic/blob/amsterdam-talk/src/temporal_logic/lemmas.lean#L454-L467
https://github.com/unitb/temporal-logic/blob/amsterdam-talk/src/temporal_logic/lemmas.lean#L454-L467

Improvement

begin [temporal] −− ← we're using a special tactic language
unfold tl_leads_to in *,
henceforth,
intros h,
have := P0 h, clear h,
eventually this,
rw [eventually_or],
−− . . .

18

Improvement

begin [temporal]
unfold tl_leads_to in *,
henceforth, C
intros h,
have := P0 h, clear h,
eventually this,
rw [eventually_or],
−− . . .

Proof Goal

p q b r : tprop,
P0 : �(p −→ ♦(q

∨
b)),

P1 : �(q −→ ♦r)
` �(p −→ ♦(r

∨
b))

19

Improvement

begin [temporal]
unfold tl_leads_to in *,
henceforth,
intros h, C
have := P0 h, clear h,
eventually this,
rw [eventually_or],
−− . . .

Proof Goal

p q b r : tprop,
_inst_1 : persistent Γ,
P0 : �(p −→ ♦(q

∨
b)),

P1 : �(q −→ ♦r)
` p −→ ♦(r

∨
b)

20

Improvement

begin [temporal]
unfold tl_leads_to in *,
henceforth,
intros h,
have := P0 h, clear h, C
eventually this,
rw [eventually_or],
−− . . .

Proof Goal

p q b r : tprop,
P0 : �(p −→ ♦(q

∨
b)),

P1 : �(q −→ ♦r),
h : p
` ♦(r

∨
b)

21

Improvement

begin [temporal]
unfold tl_leads_to in *,
henceforth,
intros h,
have := P0 h, clear h,
eventually this, C
rw [eventually_or],
−− . . .

Proof Goal

p q b r : tprop,
P0 : �(p −→ ♦(q

∨
b)),

P1 : �(q −→ ♦r),
this : ♦(q

∨
b)

` ♦(r
∨

b)

22

Improvement

begin [temporal]
unfold tl_leads_to in *,
henceforth,
intros h,
have := P0 h, clear h,
eventually this,
rw [eventually_or], C
−− . . .

Proof Goal

p q b r : tprop,
P0 : �(p −→ ♦(q

∨
b)),

P1 : �(q −→ ♦r),
this : q

∨
b

` ♦(r
∨

b)

23

Observe:

• Neither t |= nor Γ ` appear in the proof goal
• Temporal reasoning is limited to the tactics henceforth and

eventually
• Time and time intervals are completely anonymous
• The goal (e.g. ♦(r ∨ b)) is not a type; it is tprop

24

What’s the trick?

Displayed proof state:
p q b r : tprop,
P0 : �(p −→ ♦(q

∨
b)),

P1 : �(q −→ ♦r),
this : q

∨
b

` ♦(r
∨

b)

Internal proof state:
Γ p q b r : tprop,
P0 : Γ ` �(p −→ ♦(q

∨
b)),

P1 : Γ ` �(q −→ ♦r),
this : Γ ` q

∨
b

` Γ ` ♦(r
∨

b)

25

What’s the trick? (cont.)

Reasoning:
• In most lemmas, use a single Γ;
• use specialized lemmas for substituting Γ for Γ′ and have the

tactics apply them transparently;
• use function coercion so that (∀∀ ,), −→ and �(−→)

will behave like the normal type theory → and Π

26

Highlights

• write a shallow embedding in a proof assistant;
• declare special notation;
• override tactic notation

27

Highlights (cont.)

Benefits: we can use a specialized logic in a context where
• others have proved advanced and not so advanced

mathematical theorems;
• powerful automation is available;
• the prover subscribes to the small trusted kernel model

28

