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Specialized Logics

Specialized languages and logics are useful tools for emphasizing
specific aspects in models
Examples:

= hoare logic — input / output relation for imperative programs

= separation logic — resource consumption in programs

= temporal logic — evolution of the state of a computation over time

= communicating sequential processes (CSP) — interactions between
a set of processes
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The many possible approaches to building tools for a logic:

= build specialized provers / tools

pro: lots of freedom in deciding how the provers will work
cons: demands a lot of expertise other than domain expertise

= write a deep embedding in a proof assistant
pro: can reuse some of the facilities of the prover
cons: many features of the prover must be modelled in its own logic
(hard)
= write a shallow embedding in a proof assistant

pro: can reuse more support from the prover
cons: proofs become specific to chosen encoding



How to ... (continued)

The many possible approaches to building tools for a logic
(continued):



How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

= declare special notation on top of a deep or shallow
embedding



How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

= declare special notation on top of a deep or shallow
embedding

= override tactic notation (thanks to Lean!)



How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

= declare special notation on top of a deep or shallow
embedding

= override tactic notation (thanks to Lean!)

= define top-level syntax (thanks to Lean!)



How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

= declare special notation on top of a deep or shallow
embedding

pro: can immitate the look of desired logic

= override tactic notation (thanks to Lean!)

= define top-level syntax (thanks to Lean!)



How to ... (continued)

The many possible approaches to building tools for a logic
(continued):
= declare special notation on top of a deep or shallow
embedding

pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic

= override tactic notation (thanks to Lean!)

= define top-level syntax (thanks to Lean!)



How to ... (continued)

The many possible approaches to building tools for a logic
(continued):
= declare special notation on top of a deep or shallow
embedding

pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic

= override tactic notation (thanks to Lean!)

pro: can allow the user to reason in terms of the logic rather than
in terms of its encoding without implementing a new prover
from scratch

= define top-level syntax (thanks to Lean!)



How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

= declare special notation on top of a deep or shallow
embedding
pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic
= override tactic notation (thanks to Lean!)
pro: can allow the user to reason in terms of the logic rather than
in terms of its encoding without implementing a new prover
from scratch
con: —

= define top-level syntax (thanks to Lean!)



How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

= declare special notation on top of a deep or shallow
embedding
pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic
= override tactic notation (thanks to Lean!)
pro: can allow the user to reason in terms of the logic rather than
in terms of its encoding without implementing a new prover
from scratch
con: —
= define top-level syntax (thanks to Lean!)
pro: can embed a complete language inside a prover



How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

= declare special notation on top of a deep or shallow
embedding
pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic
= override tactic notation (thanks to Lean!)
pro: can allow the user to reason in terms of the logic rather than
in terms of its encoding without implementing a new prover
from scratch
con: —
= define top-level syntax (thanks to Lean!)
pro: can embed a complete language inside a prover
con: too awesome
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= write a shallow embedding in a proof assistant
= declare special notation

= override tactic notation
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What is temporal logic?

Temporal logic makes time ubiquitous and implicit
= superset of first order logic
= add two modalities: ¢ and [J

= OP, with P, a proposition means “at some point in the
future, P will hold”

= [P, with P, a proposition means "“from now on, P holds”
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What is temporal logic good for?

Use: Specifying the desired behavior of concurrent / distributed
programs under development.

Init & x=0Ay=0
a X =x+1Ay' =y—1
OV X =x-2Ay' =y+2
Spec = Init A ONext

Next

Theorem : Spec = UO(x+y =0)



Shallow embedding

def tprop := N — Prop -- N s a discrete time

def entails (p q : tprop) : Prop :=
Vi:N,pi—=qi
infix ~ F “:53 := judgement -- \/-

def eventually (p : tprop) : tprop :=
Adi N, 335 :N,p (i+j)
prefix ~{ :95 := eventually -- \di

def henceforth (p : tprop) : tprop :=
Ad:N,Vj:N,p @G+
prefix “[1°:95 := henceforth -- \squw



More notation

def t_and (p q : tprop) : tprop :=
Ai:N,piAqgi
prefix = A ":95 := t_and —— \And, not \and

def t_or (p q : tprop) : tprop :=
Ai:N piVvagi
prefix *\/ ":95 :=t_or —— \Or, not \or

def t_all {a} (P: @ — tprop) : tprop :=

At N Vx:x Pxt
notation 'VV' binders ', ' r:(scoped P, t_allP) :=r

10



Example: Proposition

P : ®& — tprop,
q : ® — tprop
FMWzx:a px Aqzx

. tprop

11



Example: Proof

Available to step through at:
https://github.com/unitb/temporal-logic/blob/
amsterdam-talk/src/temporal_logic/lemmas.lean#L469-1L490

protected lemma leads_to_cancellation'
{pqbr:tpred} {t: N}
(Po:tEP~qVD)
(Prit=qr)
tEp~r\ b=
begin
intros A h,
have := Pg _ h, clear h,
cases this with A'h,
cases h with h h,
{ rw add_assoc at h,
specialize P; _ h,
cases P; with A" h, rw < add_assoc at h,
existsi (A' + A"), rw « add_assoc,
left, apply h },
{ existsi A, right, assumption },
end

12
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Criticism

Let’s step through a small part of the proof:

{ rw add_assoc at h,
specialize P; _ h,
cases P; with A" h,
rw <— add_assoc at h,
existsi (A' + A"),
rw < add_assoc,

left, apply h },

Proof Goal
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Criticism

Let’s step through a small part of the proof:

{ rw add_assoc at h,
specialize P; _ h,
cases P; with A" h,
rw <— add_assoc at h,

existsi (A' + A"),

rw < add_assoc,

left, apply h },

Proof Goal

t A AN,
h:t+ (A + A') Eaq,

A" N,
h:t+ A+ A"+ A" Er
Ft+ A+A'+A"E=r\/b
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Improvement

https://github.com/unitb/temporal-logic/blob/
amsterdam-talk/src/temporal_logic/lemmas.lean#L454-L467

protected lemma leads_to_cancellation {p q b r: tpred}
(Po:T'Fp~q\D)
(P1:TkFHq~r1):
FFp~rVb:=
begin [temporal]
unfold t1_leads_to in *,
henceforth,
intros h,
have := Pg h, clear h,
eventually this,
rw [eventually_or],
cases this with h h,
{ left, apply P; h },
{ right, assumption },
end
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Improvement

begin [temporal] —— <« we're using a special tactic language
unfold t1_leads_to in *,
henceforth,
intros h,

have := Pg h, clear h,
eventually this,
rv [eventually_or],

18
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begin [temporal]

unfold t1_leads_to in *,

henceforth,

intros h,

have := Pg h, clear h,
eventually this,

rw [eventually_or],

<

Proof Goal

pqbr: tprop,
Po: O(p — 0(a V b)),
P; : O(q — Or)

FOE — 0(xr V1)
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Improvement

begin [temporal]
unfold t1_leads_to in *,
henceforth,
intros h, <
have := Pg h, clear h,
eventually this,
rw [eventually_or],

Proof Goal

pqbr: tprop,

_inst_1 : persistent I,

Po : O(p — 0(qa V b)),

P; : O(q — 9Or)
Fp— O(r \V/ b)

20



Improvement

begin [temporal]
unfold t1_leads_to in *,
henceforth,
intros h,
have :=Pg h, clear h,
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Improvement

begin [temporal]

unfold t1_leads_to in *,

henceforth,

intros h,

have := Pg h, clear h,
eventually this,

rw [eventually_or],

<

Proof Goal

pqbr: tprop,

Po: O(p — 0(a V b)),
Py : O(q — Or),
this:q\/ b

Fo(x Vp)

bl



Observe:

= Neither t = nor I' - appear in the proof goal

= Temporal reasoning is limited to the tactics henceforth and
eventually

= Time and time intervals are completely anonymous

= The goal (e.g. O(rV b)) is not a type,; it is tprop

24



What's the trick?

Displayed proof state:

pqbr: tprop,

Po: O(p — 0(a V b)),
Py : O(q — O1),
this:q\/ b

FO(r \/ b)

Internal proof state:

I'pagbr: tprop,

Po: Tk O(p — 0(a V b)),

P :I'FO(q — Or),

this: T'kq\/ b
FTEO(x VD)

75



What's the trick? (cont.)

Reasoning:
= In most lemmas, use a single I';
= use specialized lemmas for substituting I' for [ and have the
tactics apply them transparently;

= use function coercion so that (VV_,_), - — _and O(- — _)
will behave like the normal type theory — and I1

26



Highlights

= write a shallow embedding in a proof assistant;
= declare special notation;

= override tactic notation
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Highlights (cont.)

Benefits: we can use a specialized logic in a context where

= others have proved advanced and not so advanced
mathematical theorems;

= powerful automation is available;

= the prover subscribes to the small trusted kernel model

28



