Embedding specialized proof languages into Lean
A Case Study

Simon Hudon

Department of Philosophy and
Department of Mathematical Sciences
Carnegie Mellon University

work done in the context of my PhD at York University

January 2019

Dependent Type Theory

Dependent type theory is a general purpose reasoning framework

Dependent Type Theory

Dependent type theory is a general purpose reasoning framework
It is useful for reasoning about:

Dependent Type Theory

Dependent type theory is a general purpose reasoning framework
It is useful for reasoning about:

= algebra

Dependent Type Theory

Dependent type theory is a general purpose reasoning framework
It is useful for reasoning about:

= algebra

= analysis

Dependent Type Theory

Dependent type theory is a general purpose reasoning framework
It is useful for reasoning about:

= algebra
= analysis

= functional programs and data structures

Dependent Type Theory

Dependent type theory is a general purpose reasoning framework
It is useful for reasoning about:

= algebra

= analysis

= functional programs and data structures

= theory of computation

Dependent Type Theory

Dependent type theory is a general purpose reasoning framework
It is useful for reasoning about:

algebra

analysis

functional programs and data structures
theory of computation

etc

Dependent Type Theory

Dependent type theory is a general purpose reasoning framework
It is useful for reasoning about:

algebra

analysis

functional programs and data structures
theory of computation

etc

etc

Specialized Logics

Specialized languages and logics are useful tools for emphasizing
specific aspects in models

Specialized Logics

Specialized languages and logics are useful tools for emphasizing
specific aspects in models
Examples:

= hoare logic — input / output relation for imperative programs

Specialized Logics

Specialized languages and logics are useful tools for emphasizing
specific aspects in models
Examples:

= hoare logic — input / output relation for imperative programs

= separation logic — resource consumption in programs

Specialized Logics

Specialized languages and logics are useful tools for emphasizing
specific aspects in models
Examples:
= hoare logic — input / output relation for imperative programs
= separation logic — resource consumption in programs

= temporal logic — evolution of the state of a computation over time

Specialized Logics

Specialized languages and logics are useful tools for emphasizing
specific aspects in models
Examples:

= hoare logic — input / output relation for imperative programs

= separation logic — resource consumption in programs

= temporal logic — evolution of the state of a computation over time

= communicating sequential processes (CSP) — interactions between
a set of processes

How to ...

The many possible approaches to building tools for a logic:

How to ...

The many possible approaches to building tools for a logic:

= build specialized provers / tools

How to ...

The many possible approaches to building tools for a logic:

= build specialized provers / tools

= write a deep embedding in a proof assistant

How to ...

The many possible approaches to building tools for a logic:

= build specialized provers / tools

= write a deep embedding in a proof assistant

= write a shallow embedding in a proof assistant

How to ...

The many possible approaches to building tools for a logic:

= build specialized provers / tools
pro: lots of freedom in deciding how the provers will work

= write a deep embedding in a proof assistant

= write a shallow embedding in a proof assistant

How to ...

The many possible approaches to building tools for a logic:

= build specialized provers / tools

pro: lots of freedom in deciding how the provers will work
cons: demands a lot of expertise other than domain expertise

= write a deep embedding in a proof assistant

= write a shallow embedding in a proof assistant

How to ...

The many possible approaches to building tools for a logic:

= build specialized provers / tools

pro: lots of freedom in deciding how the provers will work
cons: demands a lot of expertise other than domain expertise

= write a deep embedding in a proof assistant
pro: can reuse some of the facilities of the prover

= write a shallow embedding in a proof assistant

How to ...

The many possible approaches to building tools for a logic:

= build specialized provers / tools

pro: lots of freedom in deciding how the provers will work
cons: demands a lot of expertise other than domain expertise

= write a deep embedding in a proof assistant

pro: can reuse some of the facilities of the prover
cons: many features of the prover must be modelled in its own logic
(hard)

= write a shallow embedding in a proof assistant

How to ...

The many possible approaches to building tools for a logic:

= build specialized provers / tools

pro: lots of freedom in deciding how the provers will work
cons: demands a lot of expertise other than domain expertise

= write a deep embedding in a proof assistant

pro: can reuse some of the facilities of the prover
cons: many features of the prover must be modelled in its own logic
(hard)

= write a shallow embedding in a proof assistant
pro: can reuse more support from the prover

How to ...

The many possible approaches to building tools for a logic:

= build specialized provers / tools

pro: lots of freedom in deciding how the provers will work
cons: demands a lot of expertise other than domain expertise

= write a deep embedding in a proof assistant
pro: can reuse some of the facilities of the prover
cons: many features of the prover must be modelled in its own logic
(hard)
= write a shallow embedding in a proof assistant

pro: can reuse more support from the prover
cons: proofs become specific to chosen encoding

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

= declare special notation on top of a deep or shallow
embedding

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

= declare special notation on top of a deep or shallow
embedding

= override tactic notation (thanks to Lean!)

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

= declare special notation on top of a deep or shallow
embedding

= override tactic notation (thanks to Lean!)

= define top-level syntax (thanks to Lean!)

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

= declare special notation on top of a deep or shallow
embedding

pro: can immitate the look of desired logic

= override tactic notation (thanks to Lean!)

= define top-level syntax (thanks to Lean!)

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):
= declare special notation on top of a deep or shallow
embedding

pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic

= override tactic notation (thanks to Lean!)

= define top-level syntax (thanks to Lean!)

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):
= declare special notation on top of a deep or shallow
embedding

pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic

= override tactic notation (thanks to Lean!)

pro: can allow the user to reason in terms of the logic rather than
in terms of its encoding without implementing a new prover
from scratch

= define top-level syntax (thanks to Lean!)

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

= declare special notation on top of a deep or shallow
embedding
pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic
= override tactic notation (thanks to Lean!)
pro: can allow the user to reason in terms of the logic rather than
in terms of its encoding without implementing a new prover
from scratch
con: —

= define top-level syntax (thanks to Lean!)

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

= declare special notation on top of a deep or shallow
embedding
pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic
= override tactic notation (thanks to Lean!)
pro: can allow the user to reason in terms of the logic rather than
in terms of its encoding without implementing a new prover
from scratch
con: —
= define top-level syntax (thanks to Lean!)
pro: can embed a complete language inside a prover

How to ... (continued)

The many possible approaches to building tools for a logic
(continued):

= declare special notation on top of a deep or shallow
embedding
pro: can immitate the look of desired logic
con: parser often limits how close we can get to desired logic
= override tactic notation (thanks to Lean!)
pro: can allow the user to reason in terms of the logic rather than
in terms of its encoding without implementing a new prover
from scratch
con: —
= define top-level syntax (thanks to Lean!)
pro: can embed a complete language inside a prover
con: too awesome

Chosen approach

= write a shallow embedding in a proof assistant

Chosen approach

= write a shallow embedding in a proof assistant

= declare special notation

Chosen approach

= write a shallow embedding in a proof assistant
= declare special notation

= override tactic notation

What is temporal logic?

Temporal logic makes time ubiquitous and implicit

What is temporal logic?

Temporal logic makes time ubiquitous and implicit

= superset of first order logic

What is temporal logic?

Temporal logic makes time ubiquitous and implicit

= superset of first order logic
= add two modalities: ¢ and [

What is temporal logic?

Temporal logic makes time ubiquitous and implicit
= superset of first order logic
= add two modalities: ¢ and [J

= OP, with P, a proposition means “at some point in the
future, P will hold”

What is temporal logic?

Temporal logic makes time ubiquitous and implicit
= superset of first order logic
= add two modalities: ¢ and [J

= OP, with P, a proposition means “at some point in the
future, P will hold”

= [P, with P, a proposition means "“from now on, P holds”

What is temporal logic good for?

Use: Specifying the desired behavior of concurrent / distributed
programs under development.

What is temporal logic good for?

Use: Specifying the desired behavior of concurrent / distributed
programs under development.

Init & x=0Ay=0

What is temporal logic good for?

Use: Specifying the desired behavior of concurrent / distributed
programs under development.

Init & x=0Ay=0

X =x+1Ay' =y—1
V X'=x=-2Ay'=y+2

(1>

Next

What is temporal logic good for?

Use: Specifying the desired behavior of concurrent / distributed
programs under development.

Init & x=0Ay=0

X =x+1Ay' =y—1
V X'=x=-2Ay'=y+2
Spec = Init A ONext

Next £

What is temporal logic good for?

Use: Specifying the desired behavior of concurrent / distributed
programs under development.

Init & x=0Ay=0
a X =x+1Ay' =y—1
OV X =x-2Ay' =y+2
Spec = Init A ONext

Next

Theorem : Spec = UO(x+y =0)

Shallow embedding

def tprop := N — Prop -- N s a discrete time

def entails (p q : tprop) : Prop :=
Vi:N,pi—=qi
infix ~ F “:53 := judgement -- \/-

def eventually (p : tprop) : tprop :=
Adi N, 335 :N,p (i+j)
prefix ~{ :95 := eventually -- \di

def henceforth (p : tprop) : tprop :=
Ad:N,Vj:N,p @G+
prefix “[1°:95 := henceforth -- \squw

More notation

def t_and (p q : tprop) : tprop :=
Ai:N,piAqgi
prefix = A ":95 := t_and —— \And, not \and

def t_or (p q : tprop) : tprop :=
Ai:N piVvagi
prefix *\/ ":95 :=t_or —— \Or, not \or

def t_all {a} (P: @ — tprop) : tprop :=

At N Vx:x Pxt
notation 'VV' binders ', ' r:(scoped P, t_allP) :=r

10

Example: Proposition

P : ®& — tprop,
q : ® — tprop
FMWzx:a px Aqzx

. tprop

11

Example: Proof

Available to step through at:
https://github.com/unitb/temporal-logic/blob/
amsterdam-talk/src/temporal_logic/lemmas.lean#L469-1L490

protected lemma leads_to_cancellation'
{pqbr:tpred} {t: N}
(Po:tEP~qVD)
(Prit=qr)
tEp~r\ b=
begin
intros A h,
have := Pg _ h, clear h,
cases this with A'h,
cases h with h h,
{ rw add_assoc at h,
specialize P; _ h,
cases P; with A" h, rw < add_assoc at h,
existsi (A' + A"), rw « add_assoc,
left, apply h },
{ existsi A, right, assumption },
end

12

https://github.com/unitb/temporal-logic/blob/amsterdam-talk/src/temporal_logic/lemmas.lean#L469-L490
https://github.com/unitb/temporal-logic/blob/amsterdam-talk/src/temporal_logic/lemmas.lean#L469-L490

Criticism

Let’s step through a small part of the proof:

{ rw add_assoc at h,
specialize P; _ h,
cases P; with A" h,
rw <— add_assoc at h,
existsi (A' + A"),
rw < add_assoc,

left, apply h },

Proof Goal

13

Criticism

Let’s step through a small part of the proof:

{ rw add_assoc at h,
specialize P; _ h,
cases P; with A" h,
rw <— add_assoc at h,

existsi (A' + A"),

rw < add_assoc,

left, apply h },

<

Proof Goal

t A AN,
h:t+ (A + A') Eq,
A" N,
h:t+ A+ A"+ A" Er
Ft+ AEOr)\b)

14

Criticism

Let’s step through a small part of the proof:

{ rw add_assoc at h,
specialize P; _ h,
cases P; with A" h,
rw <— add_assoc at h,

existsi (A' + A"),

rw < add_assoc,

left, apply h },

Proof Goal

t A AN,
h:t+ (A + A') Eq,

A" N,
h:t+ A+ A"+ A" Er
Ft+ A+ (A'+A") Er\/b

15

Criticism

Let’s step through a small part of the proof:

{ rw add_assoc at h,
specialize P; _ h,
cases P; with A" h,
rw <— add_assoc at h,

existsi (A' + A"),

rw < add_assoc,

left, apply h },

Proof Goal

t A AN,
h:t+ (A + A') Eaq,

A" N,
h:t+ A+ A"+ A" Er
Ft+ A+A'+A"E=r\/b

16

Improvement

https://github.com/unitb/temporal-logic/blob/
amsterdam-talk/src/temporal_logic/lemmas.lean#L454-L467

protected lemma leads_to_cancellation {p q b r: tpred}
(Po:T'Fp~q\D)
(P1:TkFHq~r1):
FFp~rVb:=
begin [temporal]
unfold t1_leads_to in *,
henceforth,
intros h,
have := Pg h, clear h,
eventually this,
rw [eventually_or],
cases this with h h,
{ left, apply P; h },
{ right, assumption },
end

17

https://github.com/unitb/temporal-logic/blob/amsterdam-talk/src/temporal_logic/lemmas.lean#L454-L467
https://github.com/unitb/temporal-logic/blob/amsterdam-talk/src/temporal_logic/lemmas.lean#L454-L467

Improvement

begin [temporal] —— <« we're using a special tactic language
unfold t1_leads_to in *,
henceforth,
intros h,

have := Pg h, clear h,
eventually this,
rv [eventually_or],

18

Improvement

begin [temporal]

unfold t1_leads_to in *,

henceforth,

intros h,

have := Pg h, clear h,
eventually this,

rw [eventually_or],

<

Proof Goal

pqbr: tprop,
Po: O(p — 0(a V b)),
P; : O(q — Or)

FOE — 0(xr V1)

10

Improvement

begin [temporal]
unfold t1_leads_to in *,
henceforth,
intros h, <
have := Pg h, clear h,
eventually this,
rw [eventually_or],

Proof Goal

pqbr: tprop,

_inst_1 : persistent I,

Po : O(p — 0(qa V b)),

P; : O(q — 9Or)
Fp— O(r \V/ b)

20

Improvement

begin [temporal]
unfold t1_leads_to in *,
henceforth,
intros h,
have :=Pg h, clear h,
eventually this,
rw [eventually_or],

Proof Goal

pqbr: tprop,
Po: O(p — 0(a V b)),
Py : O(q — Or),

h:p
Fo(x V b)

21

Improvement

begin [temporal]

unfold t1_leads_to in *,

henceforth,

intros h,

have := Pg h, clear h,
eventually this,

rw [eventually_or],

<

Proof Goal

pqbr: tprop,
Po: O(p — 0(a V b)),
Py : O(q — Or),
this : O(q \/ b)
FO(x V b)

29

Improvement

begin [temporal]

unfold t1_leads_to in *,

henceforth,

intros h,

have := Pg h, clear h,
eventually this,

rw [eventually_or],

<

Proof Goal

pqbr: tprop,

Po: O(p — 0(a V b)),
Py : O(q — Or),
this:q\/ b

Fo(x Vp)

bl

Observe:

= Neither t = nor I' - appear in the proof goal

= Temporal reasoning is limited to the tactics henceforth and
eventually

= Time and time intervals are completely anonymous

= The goal (e.g. O(rV b)) is not a type,; it is tprop

24

What's the trick?

Displayed proof state:

pqbr: tprop,

Po: O(p — 0(a V b)),
Py : O(q — O1),
this:q\/ b

FO(r \/ b)

Internal proof state:

I'pagbr: tprop,

Po: Tk O(p — 0(a V b)),

P :I'FO(q — Or),

this: T'kq\/ b
FTEO(x VD)

75

What's the trick? (cont.)

Reasoning:
= In most lemmas, use a single I';
= use specialized lemmas for substituting I' for [and have the
tactics apply them transparently;

= use function coercion so that (VV_,_), - — _and O(- — _)
will behave like the normal type theory — and I1

26

Highlights

= write a shallow embedding in a proof assistant;
= declare special notation;

= override tactic notation

27

Highlights (cont.)

Benefits: we can use a specialized logic in a context where

= others have proved advanced and not so advanced
mathematical theorems;

= powerful automation is available;

= the prover subscribes to the small trusted kernel model

28

