Embedding specialized proof languages into Lean A Case Study

Simon Hudon

Department of Philosophy and Department of Mathematical Sciences Carnegie Mellon University

work done in the context of my PhD at York University

January 2019

Dependent type theory is a general purpose reasoning framework

It is useful for reasoning about:

- algebra
- analysis
- functional programs and data structures
- theory of computation
- etc
- etc

- algebra
- analysis
- functional programs and data structures
- theory of computation
- etc
- etc

- algebra
- analysis
- functional programs and data structures
- theory of computation
- etc
- etc

- algebra
- analysis
- functional programs and data structures
- theory of computation
- etc
- etc

- algebra
- analysis
- functional programs and data structures
- theory of computation
- etc
- etc

- algebra
- analysis
- functional programs and data structures
- theory of computation
- etc
- etc

- algebra
- analysis
- functional programs and data structures
- theory of computation
- etc
- etc

- algebra
- analysis
- functional programs and data structures
- theory of computation
- etc
- etc

Examples:

- hoare logic input / output relation for imperative programs
- separation logic resource consumption in programs
- temporal logic evolution of the state of a computation over time
- communicating sequential processes (CSP) interactions between a set of processes

- hoare logic input / output relation for imperative programs
- separation logic resource consumption in programs
- temporal logic evolution of the state of a computation over time
- communicating sequential processes (CSP) interactions between a set of processes

- hoare logic input / output relation for imperative programs
- separation logic resource consumption in programs
- temporal logic evolution of the state of a computation over time
- communicating sequential processes (CSP) interactions between a set of processes

- hoare logic input / output relation for imperative programs
- separation logic resource consumption in programs
- temporal logic evolution of the state of a computation over time
- communicating sequential processes (CSP) interactions between a set of processes

- hoare logic input / output relation for imperative programs
- separation logic resource consumption in programs
- temporal logic evolution of the state of a computation over time
- communicating sequential processes (CSP) interactions between a set of processes

The many possible approaches to building tools for a logic:

- build specialized provers / tools
- pro: lots of freedom in deciding how the provers will work cons: demands a lot of expertise other than domain expertise
- write a *deep* embedding in a proof assistant pro: can reuse some of the facilities of the prover cons: many features of the prover must be modelled in its o (hard)
- write a *shallow* embedding in a proof assistant pro: can reuse more support from the prover cons: proofs become specific to chosen encoding

The many possible approaches to building tools for a logic:

- build specialized provers / tools
 - pro: lots of freedom in deciding how the provers will work cons: demands a lot of expertise other than domain expertise
- write a *deep* embedding in a proof assistant
 pro: can reuse some of the facilities of the prover
 cons: many features of the prover must be modelled in its own logic (hard)
- write a *shallow* embedding in a proof assistant pro: can reuse more support from the prover cons: proofs become specific to chosen encoding

The many possible approaches to building tools for a logic:

build specialized provers / tools

pro: lots of freedom in deciding how the provers will work cons: demands a lot of expertise other than domain expertise

write a *deep* embedding in a proof assistant

pro: can reuse some of the facilities of the prover cons: many features of the prover must be modelled in its own logic (hard)

 write a *shallow* embedding in a proof assistant pro: can reuse more support from the prover cons: proofs become specific to chosen encoding

The many possible approaches to building tools for a logic:

build specialized provers / tools

pro: lots of freedom in deciding how the provers will work cons: demands a lot of expertise other than domain expertise

write a *deep* embedding in a proof assistant

pro: can reuse some of the facilities of the prover cons: many features of the prover must be modelled in its own logic (hard)

write a shallow embedding in a proof assistant

The many possible approaches to building tools for a logic:

- build specialized provers / tools
 pro: lots of freedom in deciding how the provers will work
 cons: demands a lot of expertise other than domain expertise
- write a *deep* embedding in a proof assistant
 pro: can reuse some of the facilities of the prover
 cons: many features of the prover must be modelled in its own log (hard)

write a *shallow* embedding in a proof assistant

The many possible approaches to building tools for a logic:

- build specialized provers / tools
 pro: lots of freedom in deciding how the provers will work
 cons: demands a lot of expertise other than domain expertise
- write a *deep* embedding in a proof assistant
 pro: can reuse some of the facilities of the prover
 cons: many features of the prover must be modelled in its

har

write a *shallow* embedding in a proof assistant

The many possible approaches to building tools for a logic:

- build specialized provers / tools
 pro: lots of freedom in deciding how the provers will work
 cons: demands a lot of expertise other than domain expertise
- write a *deep* embedding in a proof assistant pro: can reuse some of the facilities of the prover cons: many features of the prover must be modelled in its own logic (hard)

write a *shallow* embedding in a proof assistant

The many possible approaches to building tools for a logic:

- build specialized provers / tools
 pro: lots of freedom in deciding how the provers will work
 cons: demands a lot of expertise other than domain expertise
- write a *deep* embedding in a proof assistant pro: can reuse some of the facilities of the prover cons: many features of the prover must be modelled in its own logic (hard)

• write a *shallow* embedding in a proof assistant

cons: proofs become specific to chosen encoding

The many possible approaches to building tools for a logic:

- build specialized provers / tools
 pro: lots of freedom in deciding how the provers will work
 cons: demands a lot of expertise other than domain expertise
- write a *deep* embedding in a proof assistant pro: can reuse some of the facilities of the prover cons: many features of the prover must be modelled in its own logic (hard)
- write a *shallow* embedding in a proof assistant pro: can reuse more support from the prover cons: proofs become specific to chosen encoding

The many possible approaches to building tools for a logic:

- build specialized provers / tools
 pro: lots of freedom in deciding how the provers will work
 cons: demands a lot of expertise other than domain expertise
- write a *deep* embedding in a proof assistant pro: can reuse some of the facilities of the prover cons: many features of the prover must be modelled in its own logic (hard)
- write a *shallow* embedding in a proof assistant pro: can reuse more support from the prover cons: proofs become specific to chosen encoding

The many possible approaches to building tools for a logic (continued):

- declare special notation on top of a *deep* or *shallow* embedding
 - pro: can immitate the look of desired logic
 - con: parser often limits how close we can get to desired logic
- override tactic notation (thanks to Lean!)
 - pro: can allow the user to reason in terms of the logic rather than in terms of its encoding without implementing a new prover from scratch

con: —

- define top-level syntax (thanks to Lean!)
 - pro: can embed a complete language inside a prover
 - con: too awesome

The many possible approaches to building tools for a logic (continued):

declare special notation on top of a *deep* or *shallow* embedding

pro: can immitate the look of desired logic con: parser often limits how close we can get to desired lo

override tactic notation (thanks to Lean!)

pro: can allow the user to reason in terms of the logic rather than in terms of its encoding without implementing a new prover from scratch

con: —

define top-level syntax (thanks to Lean!)

pro: can embed a complete language inside a prover

con: too awesome

The many possible approaches to building tools for a logic (continued):

declare special notation on top of a *deep* or *shallow* embedding

pro: can immitate the look of desired logic con: parser often limits how close we can get to desired logic

override tactic notation (thanks to Lean!)

pro: can allow the user to reason in terms of the logic rather than in terms of its encoding without implementing a new prover from scratch

con: ---

define top-level syntax (thanks to Lean!)

pro: can embed a complete language inside a prover

con: too awesome

The many possible approaches to building tools for a logic (continued):

declare special notation on top of a *deep* or *shallow* embedding

pro: can immitate the look of desired logic con: parser often limits how close we can get to desired logic

override tactic notation (thanks to Lean!)

pro: can allow the user to reason in terms of the logic rather than in terms of its encoding without implementing a new prover from scratch

con: —

define top-level syntax (thanks to Lean!)

The many possible approaches to building tools for a logic (continued):

- declare special notation on top of a *deep* or *shallow* embedding
 - pro: can immitate the look of desired logic
- override tactic notation (thanks to Lean!)

pro: can allow the user to reason in terms of the logic rather than in terms of its encoding without implementing a new prover from scratch

con: —

define top-level syntax (thanks to Lean!)

The many possible approaches to building tools for a logic (continued):

- declare special notation on top of a *deep* or *shallow* embedding
 - pro: can immitate the look of desired logic
 - con: parser often limits how close we can get to desired logic
- override tactic notation (thanks to Lean!)

pro: can allow the user to reason in terms of the logic rather than in terms of its encoding without implementing a new prover from scratch

con: —

define top-level syntax (thanks to Lean!)

The many possible approaches to building tools for a logic (continued):

- declare special notation on top of a *deep* or *shallow* embedding
 - pro: can immitate the look of desired logic
 - con: parser often limits how close we can get to desired logic
- override tactic notation (thanks to Lean!)
 - pro: can allow the user to reason in terms of the logic rather than in terms of its encoding without implementing a new prover from scratch

con: —

define top-level syntax (thanks to Lean!)

The many possible approaches to building tools for a logic (continued):

- declare special notation on top of a *deep* or *shallow* embedding
 - pro: can immitate the look of desired logic
 - con: parser often limits how close we can get to desired logic
- override tactic notation (thanks to Lean!)
 - pro: can allow the user to reason in terms of the logic rather than in terms of its encoding without implementing a new prover from scratch

con: —

define top-level syntax (thanks to Lean!)

The many possible approaches to building tools for a logic (continued):

- declare special notation on top of a *deep* or *shallow* embedding
 - pro: can immitate the look of desired logic
 - con: parser often limits how close we can get to desired logic
- override tactic notation (thanks to Lean!)
 - pro: can allow the user to reason in terms of the logic rather than in terms of its encoding without implementing a new prover from scratch

con: —

define top-level syntax (thanks to Lean!)

pro: can embed a complete language inside a prover

con: too awesome

The many possible approaches to building tools for a logic (continued):

- declare special notation on top of a *deep* or *shallow* embedding
 - pro: can immitate the look of desired logic
 - con: parser often limits how close we can get to desired logic
- override tactic notation (thanks to Lean!)
 - pro: can allow the user to reason in terms of the logic rather than in terms of its encoding without implementing a new prover from scratch

con: —

- define top-level syntax (thanks to Lean!)
 - pro: can embed a complete language inside a prover
 - con: too awesome

Chosen approach

- write a *shallow* embedding in a proof assistant
- declare special notation
- override tactic notation

Chosen approach

- write a *shallow* embedding in a proof assistant
- declare special notation
- override tactic notation

Chosen approach

- write a shallow embedding in a proof assistant
- declare special notation
- override tactic notation

What is temporal logic?

- superset of first order logic
- add two modalities: \Diamond and \Box
- \$\lapha P\$, with P, a proposition means "at some point in the future, P will hold"
- $\Box P$, with P, a proposition means "from now on, P holds"

- superset of first order logic
- add two modalities: \Diamond and \Box
- \$\langle P\$, with P, a proposition means "at some point in the future, P will hold"
- $\Box P$, with P, a proposition means "from now on, P holds"

- superset of first order logic
- add two modalities: \Diamond and \Box
- \$\langle P\$, with P, a proposition means "at some point in the future, P will hold"
- $\Box P$, with P, a proposition means "from now on, P holds"

- superset of first order logic
- add two modalities: \Diamond and \Box
- \$\langle P\$, with P, a proposition means "at some point in the future, P will hold"
- $\Box P$, with P, a proposition means "from now on, P holds"

- superset of first order logic
- add two modalities: \Diamond and \Box
- \$\langle P\$, with P, a proposition means "at some point in the future, P will hold"
- $\Box P$, with P, a proposition means "from now on, P holds"

Use: Specifying the desired behavior of concurrent / distributed programs under development.

 $Init \triangleq x = 0 \land y = 0$ $Next \triangleq x' = x + 1 \land y' = y - 1$ $\lor x' = x - 2 \land y' = y + 2$ $Spec \triangleq Init \land \Box Next$ $Theorem : Spec \Rightarrow \Box (x + y = 0)$

Use: Specifying the desired behavior of concurrent / distributed programs under development.

$$Init \triangleq x = 0 \land y = 0$$

$$Next \triangleq x' = x + 1 \land y' = y - 1$$

$$\lor x' = x - 2 \land y' = y + 2$$

$$Spec \triangleq Init \land \Box Next$$

$$Theorem : Spec \Rightarrow \Box (x + y = 0)$$

Use: Specifying the desired behavior of concurrent / distributed programs under development.

Theorem : Spec $\Rightarrow \Box(x + y = 0)$

Use: Specifying the desired behavior of concurrent / distributed programs under development.

$$\begin{array}{rcl} \text{Init} & \triangleq & x = 0 \land y = 0 \\ \text{Next} & \triangleq & x' = x + 1 \land y' = y - 1 \\ \lor & x' = x - 2 \land y' = y + 2 \end{array}$$

Spec \triangleq Init $\land \Box Next$

Theorem : Spec $\Rightarrow \Box(x + y = 0)$

Use: Specifying the desired behavior of concurrent / distributed programs under development.

$$\begin{array}{rcl} \text{Init} & \triangleq & x = 0 \land y = 0 \\ \text{Next} & \triangleq & x' = x + 1 \land y' = y - 1 \\ \lor & x' = x - 2 \land y' = y + 2 \end{array}$$
$$\begin{array}{rcl} \text{Spec} & \triangleq & \text{Init} \land \Box \text{Next} \end{array}$$

Theorem : Spec $\Rightarrow \Box(x + y = 0)$

Shallow embedding

def tprop := $\mathbb{N} \to \operatorname{Prop} -- \mathbb{N}$ is a discrete time

def entails (p q : tprop) : Prop := $\forall i : \mathbb{N}, p i \rightarrow q i$ infix ` \vdash `:53 := judgement -- \/-

def eventually (p : tprop) : tprop := λ i : \mathbb{N} , \exists j : \mathbb{N} , p (i+j) prefix ` \Diamond `:95 := eventually -- \di

def henceforth (p : tprop) : tprop := λ i : \mathbb{N} , \forall j : \mathbb{N} , p (i+j) prefix ` \Box `:95 := henceforth -- \sqw

More notation

```
def t_and (p q : tprop) : tprop :=

\lambda i : \mathbb{N}, p i \land q i

prefix ` \bigwedge `:95 := t_and -- \backslashAnd, not \backslash and

def t_or (p q : tprop) : tprop :=

\lambda i : \mathbb{N}, p i \lor q i

prefix ` \bigvee `:95 := t_or -- \backslash Or, not \backslash or

def t_all {\alpha} (P : \alpha \rightarrow tprop) : tprop :=

\lambda t : \mathbb{N}, \forall x : \alpha, P x t

notation `\forall\forall` binders `, ` r:(scoped P, t_all P) := r
```

Example: Proposition

$$\begin{array}{l} p : \alpha \to \text{tprop,} \\ q : \alpha \to \text{tprop} \\ \vdash (\forall \forall x : \alpha, p \ x \ \land q \ x) : \text{tprop} \end{array}$$

Example: Proof

```
Available to step through at:
https://github.com/unitb/temporal-logic/blob/
amsterdam-talk/src/temporal_logic/lemmas.lean#L469-L490
```

```
protected lemma leads_to_cancellation'
    \{p \ q \ b \ r : tpred\} \{t : \mathbb{N}\}
    (P_0 : t \models p \rightsquigarrow q \lor b)
    (P_1 : t \models q \rightsquigarrow r)
    : t \models p \rightsquigarrow r \lor b :=
begin
  intros \Delta h.
  have := P_0 h, clear h,
  cases this with \Delta^{\prime} h.
  cases h with h h.
  { rw add_assoc at h,
    specialize P_1 _ h,
    cases P_1 with \Delta^{\prime\prime} h, rw \leftarrow add_assoc at h,
    existsi (\Delta^{\prime} + \Delta^{\prime \prime}), rw \leftarrow add_assoc,
    left, apply h },
  { existsi \Delta', right, assumption },
end
```

Let's step through a small part of the proof:

```
 \begin{cases} \text{rw add_assoc at h,} \\ \text{specialize } P_1 \_ h, \\ \text{cases } P_1 \text{ with } \Delta^{\prime\prime} h, \\ \text{rw } \leftarrow \text{add_assoc at h,} \\ \text{existsi } (\Delta^{\prime} + \Delta^{\prime\prime}), \\ \text{rw } \leftarrow \text{add_assoc,} \\ \text{left, apply h }, \\ \hline -- \dots \end{cases}
```

Proof Goal	

Let's step through a small part of the proof:

```
 \begin{cases} \text{rw add}\_\text{assoc at h,} \\ \text{specialize } P_1 \_ h, \\ \text{cases } P_1 \text{ with } \Delta^{\prime\prime} \text{ h,} \\ \text{rw } \leftarrow \text{add}\_\text{assoc at h,} \\ \text{existsi } (\Delta^{\prime} + \Delta^{\prime\prime}), \\ \text{rw } \leftarrow \text{add}\_\text{assoc,} \\ \text{left, apply h }, \end{cases}
```

```
\begin{array}{l} \mathbf{t} \ \Delta \ \Delta^{\prime} : \mathbb{N}, \\ \mathbf{h} : \mathbf{t} + (\Delta + \Delta^{\prime}) \models \mathbf{q}, \\ \Delta^{\prime\prime} : \mathbb{N}, \\ \mathbf{h} : \mathbf{t} + \Delta + \Delta^{\prime} + \Delta^{\prime\prime} \models \mathbf{r} \\ \vdash \mathbf{t} + \Delta \models \Diamond (\mathbf{r} \ \bigvee \mathbf{b}) \end{array}
```

Let's step through a small part of the proof:

 \triangleleft

```
 \begin{cases} \text{rw add}_\text{assoc at h,} \\ \text{specialize } P_1 \_ h, \\ \text{cases } P_1 \text{ with } \Delta^{\prime\prime} \text{ h,} \\ \text{rw } \leftarrow \text{add}_\text{assoc at h,} \\ \text{existsi } (\Delta^{\prime} + \Delta^{\prime\prime}), \\ \text{rw } \leftarrow \text{add}_\text{assoc,} \\ \text{left, apply h }, \\ \hline -- \dots \end{cases}
```

$$\begin{array}{l} \mathbf{t} \ \Delta \ \Delta^{\mathsf{i}} : \mathbb{N}, \\ \mathbf{h} : \mathbf{t} + (\Delta + \Delta^{\mathsf{i}}) \models \mathsf{q}, \\ \Delta^{\mathsf{ii}} : \mathbb{N}, \\ \mathbf{h} : \mathbf{t} + \Delta + \Delta^{\mathsf{i}} + \Delta^{\mathsf{ii}} \models \mathbf{r} \\ \vdash \mathbf{t} + \Delta + (\Delta^{\mathsf{i}} + \Delta^{\mathsf{ii}}) \models \mathbf{r} \bigvee \mathfrak{k} \end{array}$$

Let's step through a small part of the proof:

 \triangleleft

```
 \begin{cases} \text{rw add_assoc at h,} \\ \text{specialize } P_1 \_ h, \\ \text{cases } P_1 \text{ with } \Delta^{\prime\prime} \text{ h,} \\ \text{rw } \leftarrow \text{add_assoc at h,} \\ \text{existsi } (\Delta^{\prime} + \Delta^{\prime\prime}), \\ \text{rw } \leftarrow \text{add_assoc,} \\ \text{left, apply h }, \\ \hline -- \dots \end{cases}
```

$$\begin{array}{c} \mathbf{t} \ \Delta \ \Delta' : \mathbb{N}, \\ \mathbf{h} : \mathbf{t} + (\Delta + \Delta') \models \mathbf{q}, \\ \Delta'' : \mathbb{N}, \\ \mathbf{h} : \mathbf{t} + \Delta + \Delta' + \Delta'' \models \mathbf{r} \\ \vdash \mathbf{t} + \Delta + \Delta' + \Delta'' \models \mathbf{r} \ \lor \mathbf{b} \end{array}$$

```
https://github.com/unitb/temporal-logic/blob/
amsterdam-talk/src/temporal_logic/lemmas.lean#L454-L467
```

```
protected lemma leads to cancellation {p q b r : tpred}
   (P_0 : \Gamma \vdash p \rightsquigarrow q \lor b)
   (P_1 : \Gamma \vdash q \rightsquigarrow r) :
   \Gamma \vdash p \rightsquigarrow r \lor b :=
begin [temporal]
 unfold tl leads to in *.
 henceforth.
 intros h.
 have := P_0 h, clear h,
 eventually this,
 rw [eventually or].
 cases this with h h.
  \{ \text{ left, apply } P_1 h \},\
  { right, assumption },
end
```

```
begin [temporal] -- ← we're using a special tactic language
unfold tl_leads_to in *,
henceforth,
intros h,
have := P<sub>0</sub> h, clear h,
eventually this,
rw [eventually_or],
-- ...
```

```
begin [temporal]
unfold tl_leads_to in *,
henceforth, ⊲
intros h,
have := P<sub>0</sub> h, clear h,
eventually this,
rw [eventually_or],
___...
```

```
\begin{array}{l} p \ q \ b \ r \ : \ t prop, \\ P_0 : \Box(p \longrightarrow \Diamond(q \ \lor \ b)), \\ P_1 : \Box(q \longrightarrow \Diamond r) \\ \vdash \Box(p \longrightarrow \Diamond(r \ \lor \ b)) \end{array}
```

```
begin [temporal]
unfold tl_leads_to in *,
henceforth,
intros h, ⊲
have := P<sub>0</sub> h, clear h,
eventually this,
rw [eventually_or],
___...
```

```
\begin{array}{l} p \ q \ b \ r : \texttt{tprop}, \\ \_\texttt{inst\_1} : \texttt{persistent} \ \Gamma, \\ P_0 : \Box(p \longrightarrow \Diamond(q \ \bigvee \ b)), \\ P_1 : \Box(q \longrightarrow \Diamond r) \\ \vdash p \longrightarrow \Diamond(r \ \bigvee \ b) \end{array}
```

```
begin [temporal]
unfold tl_leads_to in *,
henceforth,
intros h,
have := P<sub>0</sub> h, clear h, ⊲
eventually this,
rw [eventually_or],
___...
```

```
\begin{array}{l} p \ q \ b \ r \ : \ tprop, \\ P_0 : \Box(p \longrightarrow \Diamond(q \bigvee b)), \\ P_1 : \Box(q \longrightarrow \Diamond r), \\ h : p \\ \vdash \Diamond(r \bigvee b) \end{array}
```

```
begin [temporal]
unfold tl_leads_to in *,
henceforth,
intros h,
have := P<sub>0</sub> h, clear h,
eventually this, ⊲
rw [eventually_or],
-- ...
```

```
\begin{array}{l} p \ q \ b \ r \ : \ tprop, \\ P_0 : \ \Box(p \longrightarrow \Diamond(q \ \lor \ b)), \\ P_1 : \ \Box(q \longrightarrow \Diamond r), \\ \textbf{this} : \ \Diamond(q \ \lor \ b) \\ \vdash \ \Diamond(r \ \lor \ b) \end{array}
```

```
begin [temporal]
unfold tl_leads_to in *,
henceforth,
intros h,
have := P<sub>0</sub> h, clear h,
eventually this,
rw [eventually_or], ⊲
```

```
\begin{array}{l} p \ q \ b \ r : tprop, \\ P_0 : \Box(p \longrightarrow \Diamond(q \ \lor \ b)), \\ P_1 : \Box(q \longrightarrow \Diamond r), \\ \textbf{this} : q \ \lor \ b \\ \vdash \ \Diamond(r \ \lor \ b) \end{array}
```

Observe:

- Neither $t \models \text{nor } \Gamma \vdash \text{appear in the proof goal}$
- Temporal reasoning is limited to the tactics henceforth and eventually
- Time and time intervals are completely anonymous
- The goal (e.g. $\Diamond(r \lor b)$) is not a type; it is tprop

What's the trick?

Displayed proof state:

$$\begin{array}{l} p \ q \ b \ r : t prop, \\ P_0 : \Box(p \longrightarrow \Diamond(q \lor b)), \\ P_1 : \Box(q \longrightarrow \Diamond r), \\ \textbf{this} : q \lor b \\ \vdash \Diamond(r \lor b) \end{array}$$

Internal proof state:

```
\begin{array}{l} \Gamma \ p \ q \ b \ r : tprop, \\ P_0 : \Gamma \vdash \Box(p \longrightarrow \Diamond(q \lor b)), \\ P_1 : \Gamma \vdash \Box(q \longrightarrow \Diamond r), \\ \textbf{this} : \Gamma \vdash q \lor b \\ \vdash \Gamma \vdash \Diamond(r \lor b) \end{array}
```

What's the trick? (cont.)

Reasoning:

- In most lemmas, use a single Γ;
- use specialized lemmas for substituting Γ for Γ' and have the tactics apply them transparently;
- use function coercion so that $(\forall \forall_{-, -}), _ \longrightarrow _$ and $\Box(_ \longrightarrow _)$ will behave like the normal type theory \rightarrow and Π

Highlights

- write a shallow embedding in a proof assistant;
- declare special notation;
- override tactic notation

Highlights (cont.)

Benefits: we can use a specialized logic in a context where

- others have proved advanced and not so advanced mathematical theorems;
- powerful automation is available;
- the prover subscribes to the small trusted kernel model