Regression Proving with Dependent Types:
Theory and Practice

Karl Palmskog
https://setoid.com

The University of Texas at Austin

Joint work with Ahmet Celik, Chenguang Zhu,
and Milos Gligoric

THE UNIVERSITY OF

TEXAS %

AT AUSTIN)= =t
I

Regression Proving with Dependent Types:

Karl Palmskog
https://setoid.com

The University of Texas at Austin

Joint work with Ahmet Celik, Chenguang Zhu,
and Milos Gligoric

THE UNIVERSITY OF Kv S
TEXAS |

AT AUSTIN

“Scale Changes Everything”

Project Year Assistant Check Time LOC
4-Color Theorem 2005 Coq tens of mins 60k
Odd Order Theorem 2012 Coq tens of mins 150k
Kepler Conjecture 2015 HOL Light days 500k
CompCert 2009 Coq tens of mins 40k
selL4 2009 Isabelle/HOL hours 200k
Cogent BilbyFS 2016 Isabelle/HOL days 14k

Verdi Raft 2016 Coq tens of mins 50k

Proof Engineering Can Help

“[T]he activity of construction, maintenance,
documentation and presentation of large formal proof
developments.”

—David Aspinall

Proof Engineering Can Help

“[T]he activity of construction, maintenance,
documentation and presentation of large formal proof
developments.”

—David Aspinall

This talk

techniques for faster checking of evolving projects (for Coq)

formalization and verification of these techniques (in Coq)

Our Working Analogy: Proofs ~ Tests

m tests are “partial functional specifications” of programs
m proofs represent many, usually an infinite number of, tests

m does not fit all projects in mathematics well

Fixpoint app {A} (1 m:list A)
:= match 1 with
|0 =m
la::1” =a::appl’m
end.

1. Coq function

Our Working Analogy: Proofs ~ Tests

m tests are “partial functional specifications” of programs

m proofs represent many, usually an infinite number of, tests

m does not fit all projects in mathematics well

Fixpoint app {A} (1 m:list A)
:= match 1 with
|0 =m
la::1” =a::appl’m
end.

1. Coq function

Lemma asoc: ¥V A (1 m n:list A),
app 1l(app m n) = app(app 1 m) n.
Proof.

induction 1; intros; auto.
simpl; rewrite IH1; auto.

Qed.

2. Coq lemma

Our Working Analogy: Proofs ~ Tests

m tests are “partial functional specifications” of programs

m proofs represent many, usually an infinite number of, tests

m does not fit all projects in mathematics well

Fixpoint app {A} (1 m:list A)
:= match 1 with

|0 =m
la::1” =a::appl’m
end.

1. Coq function

Lemma asoc: ¥V A (1 m n:list A),

app 1l(app m n) = app(app 1 m) n.
Proof.

let test_app_assoc ctxt =
assert_equal
(app [1] (app [2] [31))
(app (app [1]1 [2]) [31)

induction 1; intros; auto.
simpl; rewrite IH1; auto.
Qed.

2. Coq lemma 3. OCaml test

/40

Regression Proving in Evolving Projects

Typical proving scenario:

change definition or lemma statement

begin process of re-checking all proofs

checking fails much later (for seemingly unrelated proof)

Regression Proving in Evolving Projects

Typical proving scenario:

change definition or lemma statement

begin process of re-checking all proofs

checking fails much later (for seemingly unrelated proof)

Typical testing scenario:

change method statements or method signature

begin process of re-running all tests

testing fails much later (for seemingly unrelated test)

Basic Techniques For More Efficient Regression Proving

Proof selection: check only proofs affected by changes

m file/module selection

m asynchronous proof checking

Examples: Make, Isabelle [ITP '14]

Basic Techniques For More Efficient Regression Proving

Proof selection: check only proofs affected by changes

m file/module selection

m asynchronous proof checking

Examples: Make, Isabelle [ITP '14]

Proof parallelization: leverage multi-core hardware

m parallel checking of proofs

m parallel checking of files

Examples: Make, Isabelle [ITP '13], Coq [ITP '15], Lean [CADE '15]

40

Our Recent Work on Regression Proving in Practice

m taxonomy of regression proving techniques that leverage both
selection and parallelism

m implementation of techniques in tool, iCoq, that supports Coq
projects (useful for Cl, e.g., Travis on GitHub)

m evaluation using iCoq on six open source projects
(23 kLOC over 22 revisions per project, on average)

Regression Proving Modes for Coq (Our Taxonomy)

Parallelization Selection

Granularity None Files Proofs
File level f-none f-file N/A

Proof level prnone p-file p-icoq

Coq Proof-Checking Toolchain

Legacy Top-Down Proof Checking (1990s)

m coqc: compilation of source .v files to binary .vo files
m .vo files contain specifications and all proofs

m file-level parallelism via Make

10 /40

Coq Proof-Checking Toolchain

Legacy Top-Down Proof Checking (1990s)

m coqc: compilation of source .v files to binary .vo files
m .vo files contain specifications and all proofs

m file-level parallelism via Make

Quick Compilation and Asynchronous Checking (2015)

m coqc —quick: compilation of .v files to binary .vio files
m .vio files contain specifications and proof tasks

m proof tasks checkable asynchronously in parallel

10/40

Coq Source File Example

Require Import List.
Require Import ListUtil.

Import ListNotations.

Fixpoint dedup A A_eq_dec (xs : list A) : list A :=
match xs with
' 0=10
| x :: xs =
if in_dec A_eq_dec x xs then dedup A A_eq_dec xs
else x :: dedup A A_eq_dec xs
end.

Lemma remove_dedup :
V A A_eq_dec (x : A) xs,
remove A_eq_dec x (dedup A A_eq_dec xs) =
dedup A A_eq_dec (remove A_eq_dec x xs).
Proof.
induction xs; intros; auto; simpl.
repeat (try case in_dec; try case A_eq_dec;
simpl; intuition); auto using f_equal.
- exfalso. apply n0O. apply remove_preserve; auto.
- exfalso. apply n. apply in_remove in i; intuition.
Qed.

Dedup.v

Coq Source File Example

Require Import List. Require statements expressing
Require Import ListUtil. file dependencies

Import ListNotations.

Fixpoint dedup A A_eq_dec (xs : list A) : list A :=
match xs with
' 0=10
| x :: xs =
if in_dec A_eq_dec x xs then dedup A A_eq_dec xs
else x :: dedup A A_eq_dec xs
end.

Lemma remove_dedup :
V A A_eq_dec (x : A) xs,
remove A_eq_dec x (dedup A A_eq_dec xs) =
dedup A A_eq_dec (remove A_eq_dec x xs).
Proof.
induction xs; intros; auto; simpl.
repeat (try case in_dec; try case A_eq_dec;
simpl; intuition); auto using f_equal.
- exfalso. apply n0O. apply remove_preserve; auto.
- exfalso. apply n. apply in_remove in i; intuition.
Qed.

Dedup.v

Coq Source File Example

Require Import List.
Require Import ListUtil.

Import ListNotations.

Fixpoint dedup A A_eq_dec (xs : list A) : list A := Definition of a recursive function
match xs with to remove duplicate list elements
I 0=10n . .
I x i xs = in Gallina.
if in_dec A_eq_dec x xs then dedup A A_eq_dec xs Processed by quick-compilation.
else x :: dedup A A_eq_dec xs
end.

Lemma remove_dedup :

V A A_eq_dec (x : A) xs,

remove A_eq_dec x (dedup A A_eq_dec xs) =

dedup A A_eq_dec (remove A_eq_dec x xs).
Proof.
induction xs; intros; auto; simpl.
repeat (try case in_dec; try case A_eq_dec;
simpl; intuition); auto using f_equal.
- exfalso. apply n0O. apply remove_preserve; auto.
- exfalso. apply n. apply in_remove in i; intuition.
Qed.

Dedup.v

Coq Source File Example

Require Import List.
Require Import ListUtil.

Import ListNotations.

Fixpoint dedup A A_eq_dec (xs : list A) : list A :=
match xs with
' 0=10
| x :: xs =
if in_dec A_eq_dec x xs then dedup A A_eq_dec xs
else x :: dedup A A_eq_dec xs
end.

Lemma remove_dedup : Statement (type) of a lemma in
V' A A_eq_dec (x : A) xs, Gallina
remove A_eq_dec x (dedup A A_eq_dec xs) =
dedup A A_eq_dec (remove A_eq_dec x xs).

Proof.

induction xs; intros; auto; simpl.

repeat (try case in_dec; try case A_eq_dec;
simpl; intuition); auto using f_equal.

- exfalso. apply n0O. apply remove_preserve; auto.

- exfalso. apply n. apply in_remove in i; intuition.

Qed.

Dedup.v

Coq Source File Example

Require Import List.
Require Import ListUtil.

Import ListNotations.

Fixpoint dedup A A_eq_dec (xs : list A) : list A :=
match xs with
' 0=10
| x :: xs =
if in_dec A_eq_dec x xs then dedup A A_eq_dec xs
else x :: dedup A A_eq_dec xs
end.

Lemma remove_dedup :

V A A_eq_dec (x : A) xs,
remove A_eq_dec x (dedup A A_eq_dec xs) =
dedup A A_eq_dec (remove A_eq_dec x xs).

Proof.

induction xs; intros; auto; simpl. Proof script in Ltac — potentially
repeat (try case in_dec; try case A_eq_dec; . .

simpl; intuition); auto using f_equal. time-consuming to process.

- exfalso. apply n0O. apply remove_preserve; auto. Becomes pI’OOf task.

- exfalso. apply n. apply in_remove in i; intuition.

Qed.

Dedup.v

11/40

f-none Mode: File-Level Parallelization, No Selection

Parallelization Selection

Granularity None Files Proofs
File level f.none f-file N/A

Proof level prnone p-file p-icoq

m classic mode used in most GitHub projects (“ReproveAll”)
m no overhead from proof task management or dep. tracking

m parallelism restricted by file dependency graph

12 /40

f-none Mode in Practice

ListUtil.v

Dedup.v

RemoveAll.v

13/40

f-none Mode in Practice

ListUtil.v

remove,preservel [in_remove

|remove,a11,preserve|

Dedup.v

RemoveAll.v

13/40

f-none Mode in Practice

ListUtil.v
Tremove_preserve | | in_remove

f=—-—— | remove_all_preserve |

Dedup.v RemoveAll.v
Phase Task Definitions and Lemmas
1 ListUtil.vo remove_preserve, in_remove

13 /40

f-none Mode in Practice

ListUtil.v

remove_preserve | | in_remove

=== | remove_all_preserve |

Dedup.v RemoveAll.v
Phase Task Definitions and Lemmas
1 ListUtil.vo remove_preserve, in_remove
2 Dedup.vo dedup, remove_dedup
2 RemoveAll.vo remove_all, remove_all_in, remove_all_preserve

13 /40

p-none Mode: Proof-Level Parallelization, No Selection

Parallelization Selection

Granularity None Files Proofs
File level f-none f-file N/A

Proof level prnone p-file p-icoq

m used in some GitHub Coq projects
m overhead from proof task management

m parallelism (largely) unrestricted by file dependency graph

14 /40

p-none Mode in Practice

ListUtil.v

| remove_preserve | | in_remove |

A A

=== | remove_all_preserve |

Dedup.v RemoveAll.v

15 /40

p-none Mode in Practice

ListUtil.v

| remove_preserve | | in_remove |

A A

=== | remove_all_preserve |

Dedup.v RemoveAll.v
Phase Task Definitions and Lemmas
1 ListUtil.vio remeve—preserve, in—remove

15 /40

p-none Mode in Practice

ListUtil.v

| remove_preserve | | in_remove |

A A

=== | remove_all_preserve |

Dedup.v RemoveAll.v

Phase Task Definitions and Lemmas

1 ListUtil.vio remeve—preserve, in—remove
2 Dedup.vio dedup, remove-dedup

2 RemoveAll.vio remove_all, remeve-all-in, remove-all-preserve

p-none Mode in Practice

ListUtil.v

A A

Dedup.v RemoveAll.v

Phase Task Definitions and Lemmas

1 ListUtil.vio remeve—preserve, in—remove
2 Dedup.vio dedup, remove-dedup

2 RemoveAll.vio remove_all, remeve-all-in, remove-all-preserve
3 checking remove_preserve

3 checking in_remove

3 checking remove_dedup

3 checking remove_all_in

3 checking remove_all_preserve

15 /40

f-file Mode: File-Level Parallelization, File Selection

Parallelization Selection

Granularity None Files Proofs
File level f.none f.-file N/A

Proof level pnone p-file p-icoq

m persists file checksums
m overhead from file dependency tracking

m parallelism restricted by file dependency graph

16 /40

f.-file Mode in Practice

ListUtil.v

remove_preserve | | in_remove

1= - == | remove_all_preserve |

Dedup.v RemoveAll.v

17 /40

f.-file Mode in Practice

ListUtil.v

remove_preserve | | in_remove

1= - == | remove_all_preserve |

Dedup.v RemoveAll.v

17 /40

f.-file Mode in Practice

ListUtil.v

remove_preserve | | in_remove

1= - == | remove_all_preserve |

Dedup.v RemoveAll.v
Phase Task Definitions and Lemmas
1 ListUtil.vo remove_preserve, in_remove

17 /40

f.-file Mode in Practice

ListUtil.v

remove_preserve | | in_remove

1= -=- | remove_all_preserve |

Dedup.v RemoveAll.v
Phase Task Definitions and Lemmas
1 ListUtil.vo remove_preserve, in_remove
2 Dedup.vo dedup, remove_dedup

17 /40

p-file Mode: Proof-Level Parallelism, File Selection

Parallelization Selection

Granularity None Files Proofs
File level f.none f.-file N/A

Proof level pnone p-file p-icoq

m persists file checksums
m overhead from file dependency tracking

m parallelism (mostly) unrestricted by file dependency graph

18/40

p-file Mode in Practice

ListUtil.v
remove_preserve | | in_remove

=== | remove_all_preserve |

Dedup.v RemoveAll.v

19/40

p-file Mode in Practice

ListUtil.v
remove_preserve | | in_remove

=== | remove_all_preserve |

Dedup.v RemoveAll.v

19/40

p-file Mode in Practice

ListUtil.v
remove_preserve | | in_remove

=== | remove_all_preserve |

Dedup.v RemoveAll.v
Phase Task Definitions and Lemmas
1 ListUtil.vio remove-preserve, in-remove

19/40

p-file Mode in Practice

ListUtil.v
remove_preserve | | in_remove

=== | remove_all_preserve |

Dedup.v RemoveAll.v
Phase Task Definitions and Lemmas
1 ListUtil.vio remove-preserve, in-remove
2 RemoveAll.vio remove_all, remeve-all—in, remove-all-preserve

p-file Mode in Practice

ListUtil.v
remove_preserve | | in_remove

=== | remove_all _preserve |

Dedup.v RemoveAll.v

Phase Task Definitions and Lemmas

1 ListUtil.vio remove-preserve, in-remove

2 RemoveAll.vio remove_all, remeve-all—in, remove-all-preserve
3 checking remove_all_in
3 checking remove_all_preserve

pricoq Mode: Proof-Level Parallelism, Proof Selection

Parallelization Selection

Granularity None Files Proofs
File level f-none f-file N/A

Proof level pnone p-file p-icoq

m persists file & proof checksums
m overhead from file & proof dependency tracking

m parallelism (mostly) unrestricted by file dependency graph

20 /40

p-icoq Mode in Practice

ListUtil.v

remove_preserve | | in_remove

=== | remove_all_preserve |

Dedup.v RemoveAll.v

21/40

p-icoq Mode in Practice

ListUtil.v
| remove_preserve | | in_remove |
|/ \
\ a_d_ - Tod | remove_all_preserve |
remove_dedu
| dedup | remove dedup | | | —————

Dedup.v RemoveAll.v

21/40

p-icoq Mode in Practice

ListUtil.v
| remove_preserve | | in_remove |
|/ \
\ a_d_ - Tod | remove_all_preserve |
remove_dedu
| dedup | remove dedup | | | —————

Dedup.v RemoveAll.v

21/40

p-icoq Mode in Practice

ListUtil.v
| remove_preserve | | in_remove |
|/ \
\ a_d_ - Tod | remove_all_preserve |
edu remove_dedu

Dedup.v RemoveAll.v
Phase Task Definitions and Lemmas
1 ListUtil.vio remove-preserve, in-remove

21 /40

p-icoq Mode in Practice

ListUtil.v

| remove_preserve | | in_remove |

1 ‘\\
\ a_d_ - | tod | remove_all_preserve
| dedup <] remove dedup | | | L————

\
I
remove_all ;

! remove_all_in
Pt

Dedup.v RemoveAll.v

Phase Task Definitions and Lemmas

1 ListUtil.vio remove-preserve, in-remove
2 Dedup.vio dedup, remove-dedup

2 RemoveAll.vio remove_all, remove-all—in, remove-all-preserve

21 /40

p-icoq Mode in Practice

ListUtil.v
| remove_preserve | | in_remove |
|/ \
| a_d_ - e | remove_all_preserve |
, dedup ,<—| remove_dedup
_____ e _ 4 _ - -
'remove all |

Dedup.v RemoveAll.v
Phase Task Definitions and Lemmas
1 ListUtil.vio remove-preserve, in-remove
2 Dedup.vio dedup, remove-dedup
2 RemoveAll.vio remove_all, remove-all—in, remove-all-preserve
3 checking in_remove
3 checking remove_dedup
3 checking remove_all_in

21 /40

pricoq Workflow with 4-way Parallelization

Analysis Checking Collection

file dep.
graph

.v files

proof dep.
graph

22/40

pricoq Workflow with 4-way Parallelization

| Analysis | Checking \ Collection
I I I
file dep.| ! |compilation| ! X
graph i | commands | 1
I | |
v files | ' X
1 1
1 1 1
proof dep. : affected : :
graph | proofs : X

22/40

pricoq Workflow with 4-way Parallelization

| Analysis | Checking
I I
file dep.| ' |compilation | proof
graph i | commands | 1 |dependencies
i |
-v files | !
: : proof-
proof dep.| , affected | checking
graph : proofs : commands

Collection

22/40

pricoq Workflow with 4-way Parallelization

| Analysis | Checking \ Collection
I I I
file dep.| ' [compilation ! proof ! new dep.
graph i | commands | 1 |dependencies| graphs
I I I
-v files | ' !
1
1 1 1
proof-
proof dep.| affected : checking \ storage
graph : proofs : commands :

22/40

Evaluation: Open Source Git-Based Projects

Project LOC Domain

Coquelicot 38260 real number analysis

Finmap 5661 finite sets and maps

Flocq 24786 floating-point arithmetic

Fomegac 2637 formal system metatheory

Surface Effects 9621 functional programming languages
Verdi 56147 distributed systems

> 137112

Avg. 22852.00

23 /40

Evaluation: Open Source Git-Based Projects

Project LOC +#Revs. #Files #Proof Tasks
Coquelicot 38260 24 29 1660
Finmap 5661 23 4 959
Flocq 24786 23 40 943
Fomegac 2637 14 13 156
Surface Effects 9621 24 15 289
Verdi 56147 24 222 2756
> 137112 132 323 6763

Avg. 22852.00 22.00 53.83 1127.16

24 /40

&> -/8582089
-pgepscoe
-qq9l19¢cee
-€9949¢734

> -ee70461°
-3439€7ST3
-qozeacve

>8> -890€9€81L

-G98981L4°

-Ge8veeco

-8277EP66

-oe/511Z8
-G929201§
-4€2£9L48
-6587/¥2€
-ppezayee
-P0269822
JLL6VLOL
-670E680€
0495196
-19e961 40
-€£8/8159
-geegayaq

=) o <)

[s] me_hz

& fnone -©p-none < ffile = pfile & p-icoq

i)
(@)
O
O
>
(ox
(@)
)
c
9
)
L
N
K7
“©
—
(T
o
>
)
Z
4
L=
2=
=
(%]
=
- }
(0]
Q
o

-3v¥S02.L9 -

Revision

25 /40

Fomegac

wH.
o
)
L
N

& fnone -©p-none < ffile = pfile & p-icoq

0-

o

Wmék1

30-

Results with 4-way Parallel

\Ev AN AL

-889PLP18
19902059
-15Gpa6aY
-2LP9S LIS
-5P6ELPZY
-048EE466 |
-agarsLov
-96q1283
-94zvY6L
-sq19zesL
-ezLadd6e
:m/w b -£6206L0¢

-9/€993€0

ion

Revis

26 /40

Speedups over f-none for 4-way Parallel Checking

9
[£-none
81 |[p-none
Of-file
o 7 .
§ Bp-file
w6 lp-icoq
g
o 5|
& 4
[N
3 3
o
Q
0w 2+
IWM I Hﬂm Hﬂm 1/ T
0 ﬂ
Coquelicot Finmap Flocq Fomegac Surface Effects Verdi

“How much faster modes are than the default mode, for each project”

27 /40

Speedups from Sequential to 4-way Parallel Checking

[£-none]

3| |[p-none
= Of-file
= Dp-file
S 250 g..;
= pricoq
b —
s 2 p N
< —
5 —
*g 1.5 _
i
[e N
3
T 1
[
[e N
)

0.5
0
Coquelicot Finmap Flocq Fomegac Surface Effects Verdi

“Effect of parallelism on each mode and project”

28 /40

Our Recent Work on the Theory of Regression Proving

We want to prove our regression proving techniques correct!

First steps:
m model of change impact analysis in Coq using MathComp
m practical tool, Chip, extracted from Coq code

m evaluation of Chip for regression testing and build tools

29 /40

Impact Analysis, Abstractly

Formal Model, Informally

finite sets of vertices V, V/ where V C V/

set A of artifacts with decidable equality

functions f : V- Aand ' : V' — A

dependency graphs g and g’ for vertices in V and V/
set N C V' of checkable vertices

operation check on vertices, with distinguishable results R

31/40

Formal Model, Informally

Modified Vertices

A vertex v € V is modified whenever f(v) # f'(v).

Impacted Vertices

A vertex v € V is impacted (v € /) if it is reachable from some

modified vertex in g 1.

Fresh Vertices
A vertex v € V' is fresh (v € F) whenever v ¢ V.

We check all vertices in the set (/U F) N N.

32/40

Encoding in Coq using MathComp (Sketch)

Variable (A : eqType).

Variables (V' : finType) (P : pred V).
Definition V := sig_finType P.
Variables (f': V' — A) (f : V — A).

Definition impacted (g : rel V) (m: {set V}): {set V} :=
\bigcup_(x | x \in m) [set y | connect g x y].

1

Definition impacted_V' gm := [set (val v) | v in impacted g~ ' m].
Definition fresh_ V' := [set v | ~P v].
Definitionmod_V := [set v | f v I= £ (val v)].

Definition impacted_fresh_V' g := impacted_V' gmod_V :|: fresh_V'

33/40

Correctness Approach

m assume we have all tuples of vertices in V' and results of
applying check

m then, we check on all impacted and fresh vertices, and add
results and unimpacted-vertex tuples to form set R

m is R complete: does it contain all checkable vertices in V/?

m is R sound: are all outcomes as if checked from scratch?

34/40

Correctness in Coq (Sketch)

Variable (R : eqType).

Variables (g : rel V) (g : rel V').

Variables (checkable : pred V) (checkable’ : pred V').
Variables (check : V. — R) (check' : V' — R).

Variable res_V : seq (V * R).
Hypothesis res_VP : Vv r,
reflect (checkable v A check v =r) ((v,r) \in res_V).

Definition res_unimpacted_V' := [seq (val vr.l, vr.2) |

vr < res_V & val vr.l \notin impacted_V' g mod_V].
Definition res_V' := res_impacted_fresh_V' 4 res_unimpacted_V'.
Definition chk_V' := [seq vr.l | vr + res_V].

Theorem chk_V'_compl : V v, checkable' v — v \in chk_V'.
Theorem chk_V'_sound : Vv r, (v, r) \in res_V' —
checkable' v A check' v = r.

35 /40

Hierarchical Impact Analysis

U is set of coarse-grained components (“files”)
V is set of fine-grained components (“proofs”)
p: U— 2V is partition of V

g7 is dep. graph for U, g, is dep. graph for V

we can use impact analysis of U and gt to analyze V and g,

36 /40

Hierarchical Impact Analysis, lllustrated

37/40

Hierarchical Strategies

Overapproximation Strategy (similar to f-file)

m Ul is set of impacted and fresh vertices in U’
 let V= Uyey, #(8)
m check all checkable vertices in VF’,

Compositional Strategy (similar to p-icoq)

m U; is set of impacted vertices in U

m let Vp =U,cy, P(0)

m let g, be subgraph of g induced by V,
[

perform impact analysis in gp, check resulting vertices

38 /40

Tool Implementation and Evaluation

extracted tool to OCaml from refined Coq code
integrated with two test selection tools and one build tool

compared outcomes/times with those for unmodified tools

outcomes are the same and things run a little slower

39/40

Conclusion

See our iCoq and piCoq papers and recommendations to Coq
developers: https://setoid.com

Contact us:

Karl Palmskog, palmskog@utexas.edu
Ahmet Celik, ahmetcelik@utexas.edu

[
[
m Chenguang Zhu, cgzhu@utexas.edu
[

Milos Gligoric, gligoric@utexas.edu

40 /40

https://setoid.com

	Introduction
	Appendix

