
Logical Verification 2018–2019
Vrije Universiteit Amsterdam
Lecturers: dr. J. C. Blanchette and dr. J. Hölzl

Mock Exam
Thursday 32 Movember 2018, 15:15–18:00, WN-Y666
5 problems, 90 points
Answers may be given in English or Dutch

Proof Guidelines

We expect detailed, rigorous, mathematical proofs, but we do not ask you to write Lean proofs. You are
welcome to use standard mathematical notation or Lean structured commands (e.g., assume, have, show,
calc). You can also use tactical proofs (e.g., intro, apply), but then please indicate some of the interme-
diate goals, so that we can follow the chain of reasoning.

Major proof steps, especially applications of induction and invocation of the induction hypothesis, must be
stated explicitly. For each case of a proof by induction, you must list the inductive hypotheses assumed (if
any) and the goal to be proved. Minor proof steps corresponding to refl, simp, or arithmetic need not be
justified if you think they are obvious (to humans), but you should say which key lemmas they follow from.

You should be explicit whenever you use a function definition or an introduction rule for an inductive predi-
cate, especially for functions and predicates that are specific to an exam question.

Answer:

This version of the exam includes suggested answers, presented in blocks like this one. Many of the proposed
proofs are atypical in that they were developed using Lean and are syntactically correct. Such proofs would
be accepted at the exam, but we realize that it is hard to develop correct Lean proofs on paper; hence the
flexible proof guidelines above.
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Question 1. List concatenation and reversal (6+5+4+6 points)

Consider the following Lean function on lists:

def concat {α : Type} : list (list α) → list α

| [] := []

| (xs :: xss) := xs ++ concat xss

1a. Prove the following lemma about concatenation:

lemma map_concat {α β : Type} (f : α → β) :

∀xss : list (list α), map f (concat xss) = concat (map (map f) xss)

You may assume basic lemmas about map, including its definition:

def map {α β : Type} (f : α → β) : list α → list β

| [] := []

| (x :: xs) := f x :: map xs

Answer:

| [] := by refl

| (xs :: xss) :=

calc map f (concat (xs :: xss)) = map f (xs ++ concat xss) : by rw concat

... = map f xs ++ map f (concat xss) : by simp

... = map f xs ++ concat (map (map f) xss) : by rw map_concat

... = concat (map f xs :: map (map f) xss) : by rw concat

... = concat (map (map f) (xs :: xss)) : by simp

1b. Give the definition in Lean of a reverse function that takes a list in argument and returns it with its elements
in reverse order.

Answer:

def reverse {α : Type} : list α → list α

| [] := []

| (x :: xs) := reverse xs ++ [x]

1c. Complete the statements of the following properties that describes the behavior of concat and reverse

(defined above) with respect to the append operator (++), by filling in the holes (_). These properties should
describe how concat and reverse distribute over ++. You are not asked to prove the properties.

lemma concat_snoc {α : Type} :

∀(xs : list α) (xss : list (list α)), concat (xss ++ [xs]) = _

lemma reverse_append {α : Type} :

∀xs ys : list α, reverse (xs ++ ys) = _
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Answer:

concat xss ++ xs

reverse ys ++ reverse xs

1d. Prove the following lemma, using the above definitions and properties.

lemma reverse_concat {α : Type} :

∀xss : list (list α), reverse (concat xss) =

concat (reverse (map reverse xss))

Answer:

| [] := by refl

| (xs :: xss) :=

calc reverse (concat (xs :: xss)) = reverse (xs ++ concat xss) : by refl

... = reverse (concat xss) ++ reverse xs : by rw reverse_append

... = concat (reverse (map reverse xss)) ++ reverse xs : by rw reverse_concat

... = concat (reverse (map reverse xss) ++ [reverse xs]) : by rw concat_snoc

... = concat (reverse (reverse xs :: map reverse xss)) : by rw reverse

... = concat (reverse (map reverse (xs :: xss))) : by refl
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Question 2. Sorted lists (6+4+4 points)

2a. Define in Lean an inductive predicate sorted that takes a list of natural numbers as argument and that returns
true if and only if that list is sorted in increasing order. The definition should distinguish three cases:

• The empty list is sorted.

• Any list of length 1 is sorted.

• A list [x1, x2, . . . , xn] of length n≥ 2 is sorted if x1 ≤ x2 and [x2, . . . , xn] is sorted.

Answer:

inductive sorted : list N → Prop

| nil : sorted []

| single {x : N} : sorted [x]

| two_or_more {x y : N} {xs : list N} (xy : x ≤ y) (yxs : sorted (y :: xs)) :

sorted (x :: y :: xs)

2b. Prove the following four lemmas to test your definition.

example : sorted []

example : sorted [2]

example : sorted [3, 5]

example : sorted [7, 9, 9, 11]

Answer:

example : sorted [] :=

sorted.nil

example : sorted [2] :=

sorted.single

example : sorted [3, 5] :=

sorted.two_or_more dec_trivial sorted.single

example : sorted [7, 9, 9, 11] :=

sorted.two_or_more dec_trivial

(sorted.two_or_more dec_trivial

(sorted.two_or_more dec_trivial

sorted.single))

2c. Not all lists are sorted. Prove the following counterexample.

example : ¬ sorted [17, 13]

Answer:
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assume s : sorted [17, 13],

have 17 ≤ 13 := match s with sorted.two_or_more xy yxs := xy end,

have ¬ (17 ≤ 13) := dec_trivial,

show false, from by contradiction
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Question 3. Program equivalence (6+5+5 points)

Consider the following WHILE language:

inductive program (σ : Type) : Type

| skip {} : program

| assign : (σ → σ) → program

| seq : program → program → program

| ite : (σ → Prop) → program → program → program

| while : (σ → Prop) → program → program

In the following, we fix a type σ of states.

Recall the big-step semantic predicate (p, s) =⇒ t and the following notion of program equivalence:

def program_equiv (p1 p2 : program σ) : Prop :=

∀s t, (p1, s) =⇒ t ↔ (p2, s) =⇒ t

We use the abbreviation p1 ≈ p2 for program_equiv p1 p2.

3a. Prove the following program equivalence, which can be used by a compiler to exchange the ‘then’ and the
‘else’ branches of an ‘if’ statement.

example {p q : program σ} {c : σ → Prop} :

ite c p q ≈ ite (λs, ¬ c s) q p

Answer:

begin

intros s t,

apply iff.intro,

repeat {

intro h,

cases h,

{ apply big_step.ite_false; cc },

{ apply big_step.ite_true; cc } }

end

Intuitively, proving the equivalence amounts to proving two implications:

(ite c p q, s) =⇒ t → (ite (λs, ¬ c s) q p, s) =⇒ t

and
(ite (λs, ¬ c s) q p, s) =⇒ t → (ite c p q, s) =⇒ t

where s and t are fixed but unknown.

Let us focus on the first goal. The condition c is either true or false in state s. If it is true, then the hypothesis
(ite (λs, ¬ c s) q p, s) =⇒ t must have been proved using the ite_true rule from the big-step
semantics, and we apply the ite_false rule to prove the desired conclusion. This works because ¬¬ c s
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is true if c s is true. If the condition is false, the hypothesis must have been proved using ite_false, and
we apply ite_true to prove the conclusion, analogously.

The case of the second goal is completely analogous and therefore omitted.

3b. By appealing to the big-step semantics, explain why infinite loops never exit, a property that can be stated
formally as follows.

lemma big_step_while_true {p : program σ} {s t : σ} :

¬ 〈while (λ_, true) p, s〉 =⇒ t

Answer:

begin

generalize eq : (while (λ_, true) p, s) = qs,

intro h,

induction h generalizing s; cases eq,

{ apply h_ih_hw, refl },

{ apply h_hs, trivial }

end

Admittedly, the above is not very readable. The idea is to assume 〈while (λ_, true) p, s〉 =⇒ t and
show that this leads to a contradiction. We perform an induction on the rules of the big-step semantics. The
only two possible cases, syntactically, are the case where the condition (λ_, true) is true in s and the case
where it is false. Clearly, the second case is impossible ((λ_, true) s = true). Remains the first case.

By the big-step semantics, there must exist a state u such that

〈p, s〉 =⇒ u and 〈while (λ_, true) p, u〉 =⇒ t.

But by the (second) induction hypothesis, we also know that

¬ 〈while (λ_, true) p, u〉 =⇒ t.

Contradiction.

3c. Use the above lemma to prove the following program equivalence, which can be used to eliminate dead code
in an optimizer.

example {p p’ : program σ} : seq (while (λ_, true) p) p’ ≈ while (λ_, true) p

Answer:

begin

intros s t,

apply iff.intro,

{ intro h, cases h, exact absurd h_h1 big_step_while_true },

{ intro h, exact absurd h big_step_while_true }

end
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Intuitively, to prove the property, we must prove two implications:

(seq (while (λ_, true) p) p’, s) =⇒ t → (while (λ_, true) p, s) =⇒ t

and

(while (λ_, true) p, s) =⇒ t → (seq (while (λ_, true) p) p’, s) =⇒ t

The second goal is easier. From the assumption while (λ_, true) p, s) =⇒ t, we immediately have
a contradiction with the lemma big_step_while_true proved above.

For the first goal, from the assumption seq (while (λ_, true) p) p’, s) =⇒ t, we obtain the exis-
tence of a state u such that

(while (λ_, true) p, s) =⇒ u and (p’, u) =⇒ t

The first property contradicts big_step_while_true.
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Question 4. Finite sets (4+6+6 points)

4a. Define an inductive predicate finite in Lean that returns true if and only if its argument is a finite set (of
type set α). The definition should distinguish two cases:

• The empty set is finite.

• If A is finite, then {a}∪A is finite.

Put the definition in a namespace called v1.

Answer:

namespace v1

inductive finite {α : Type} : set α → Prop

| empty : finite /0
| insert (a : α) (A : set α) (fin_A : finite A) : finite (insert a A)

end v1

(Instead of insert a A, we would also accept the traditional syntax {a} ∪ A.)

4b. Give an alternative Lean definition for finite, this time distinguishing three cases:

• The empty set is finite.

• The singleton set {a} is finite.

• If A and B are finite, then A∪B is finite.

Put the definition in a namespace called v2.

Answer:

namespace v2

inductive finite {α : Type} : set α → Prop

| empty : finite /0
| singleton (a : α) : finite (insert a /0)
| union (A B : set α) (fin_A : finite A) (fin_B : finite B) : finite (A ∪ B)

end v2

4c. As a step towards proving the two definitions equivalent, prove the following lemma about v1.finite:

namespace v1

lemma finite.union {α : Type} :

∀A B : set α, finite A → finite B → finite (A ∪ B) :=
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end v1

Answer:

namespace v1

-- basic lemmas we assume

@[simp] lemma union_empty_left {α : Type} {A : set α} :

/0 ∪ A = A := sorry

@[simp] lemma insert_union {α : Type} {a : α} {A B : set α} :

insert a A ∪ B = insert a (A ∪ B) := sorry

lemma finite.union {α : Type} :

∀A B : set α, finite A → finite B → finite (A ∪ B) :=

begin

intros A B fin_A fin_B,

induction fin_A,

{ simp,

exact fin_B },

{ simp,

apply finite.insert,

exact fin_A_ih }

end

end v1

Intuitively, we perform an induction on finite A. There are two cases.

If A is empty, then we have A ∪ B = B; hence the goal is simply finite B, which we have by assumption
(fin_B).

If A is of the form {a} ∪ A’, then the goal is to prove finite ({a} ∪ A’) ∪ B. The induction hypothesis
tells us that finite (A’ ∪ B).

Clearly, we have ({a} ∪ A’) ∪ B = {a} ∪ (A’ ∪ B). We can use the second introduction rule for
finite (called finite.insert above) to prove this, leaving the proof obligation finite (A’ ∪ B).
This is exactly the induction hypothesis.
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Question 5. Finite sets as quotients (6+3+5+5+4 points)

Finite sets can be defined in various ways. One way is to start with a raw type of finite lists and take the
quotient over the equivalence relation r := λxs ys, ∀x, x ∈ xs ↔ x ∈ ys, meaning that two lists
are put in the same equivalence class if they contain exactly the same elements.

In Lean, this could be done as follows:

instance fin_set.rel (α : Type) : setoid (list α) :=

{ r := λxs ys, ∀x, x ∈ xs ↔ x ∈ ys,

iseqv := _ }

def fin_set (α : Type) : Type := quotient (fin_set.rel α)

However, there is a hole (_) in the definition, standing for a proof that the relation r is an equivalence relation
(i.e., is reflexive, symmetric, and transitive).

5a. State and prove the three properties that capture the fact that r is an equivalence relation.

Answer:

The properties can be stated as follows:

lemma r_reflexive (xs : list α) : r xs xs

lemma r_symmetric (xs ys : list α) : r xs ys → r ys xs

lemma r_transitive (xs ys zs : list α) : r xs ys → r ys zs → r xs zs

By expanding the definition of r, we basically exploit the fact that↔ is itself an equivalence relation, proving
each of the three properties of r by appealing to the analogous property of↔.

For those who care, the hole in the fin_set.rel proof above can be filled as follows:

〈 (assume xs, by simp),

(assume xs ys ys_xs x, by simp *),

(assume xs ys zs xs_ys ys_zs, by simp *) 〉

5b. The empty finite set can be defined in Lean as follows:

def fin_empty {α : Type} : fin_set α := J[]K

Inspired by the above, define a fin_singleton operation that, given an element a, returns a singleton of
type fin_set α containing that element.

Answer:

def fin_singleton {α : Type} (a : α) : fin_set α := J[a]K

5c. Next, define the union operator on fin_set α by filling the hole (_) in the following definition:

def fin_union {α : Type} (A B : fin_set α) : fin_set α :=

quotient.lift_on2 A B (λas bs, Jas ++ bsK) _
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The hole has type

∀as1 as2 bs1 bs2 : list α, r as1 bs1 → r as2 bs2 → Jas1 ++ as2K = Jbs1 ++ bs2K

Answer:

By soundness of quotients (quotient.sound), it suffices to prove that

r (as1 ++ as2) (bs1 ++ bs2)

By unfolding the definition of r, we obtain the goal

x ∈ as1 ++ as2 ↔ x ∈ bs1 ++ bs2

In the left-to-right direction, we have x ∈ as1 ++ as2 and must prove x ∈ bs1 ++ bs2. By case analysis
on the hypothesis, we have either x ∈ as1 or x ∈ as2. In the first subcase, we prove x ∈ bs1 by exploiting
the hypothesis r as1 bs1; hence x ∈ bs1 ++ bs2. The second subcase is analogous but first proves x ∈
bs2.

The right-to-left direction is entirely analogous.

In Lean:

begin

intros as1 bs1 as2 bs2 as1_bs1 as2_bs2,

apply quotient.sound,

intro x,

simp,

apply iff.intro,

{ intro h,

cases h,

{ apply or.intro_left,

rw ←as1_bs1 x,

assumption },

{ apply or.intro_right,

rw ←as2_bs2 x,

assumption } },

{ intro h,

cases h,

{ apply or.intro_left,

rw as1_bs1 x,

assumption },

{ apply or.intro_right,

rw as2_bs2 x,

assumption } }

end

5d. Is the following property provable or not? If yes, please argue why. If no, give a counterexample (specifying
concrete values for α and A).
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lemma exists_list_of_fin_set {α : Type} (A : fin_set α) :

∃xs : list α, A = JxsK

Answer:

The property is provable. Without loss of generality, A can be expressed as JysK for some list ys. (In Lean,
this step appeals to the misnamed lemma quotient.induction_on.) We can then take ys as the witness
for xs. The proof is then by reflexivity of =.

In Lean:

lemma exists_list_of_fin_set {α : Type} (A : fin_set α) :

∃xs : list α, A = JxsK :=

begin

apply quotient.induction_on A,

intro,

apply exists.intro,

refl

end

5e. Explain what the following definition achieves. Why do you think it might be useful?

noncomputable def list_of_fin_set {α : Type} (A : fin_set α) : list α :=

@classical.some (list α) (λxs, A = JxsK) (exists_list_of_fin_set A)

Answer:

The function converts a finite set A into an arbitrary list that contains the same element. It can be useful to
repair mismatches in APIs (for example, if an API requires a list but all we have is a finite set).

The grade for the exam is the total amount of points divided by 10, plus 1.
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