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bfseries Motivation



Lean Forward

A project at the VU: formalize modern results in number theory, in
Lean.

Develop comprehensive libraries that will help with many results.
Target “research areas”/collections of moderate di�iculty results,
instead of single challenge theorems.
Work on the system and automation alongside the formalizing.
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Formalizing number theory

Number theory starts as “the study of Z” but quickly goes beyond this.

We need libraries for:
computations onN, Z,Q,R: divisibility, modularity, factoring,
arithmetic, inequalities, . . .
less familiar “number” structures, such as number fields, the
p-adic numbers, . . .
univariate andmultivatiate polynomials, and related algebra and
geometry
special functions: Dirichlet series, modular forms, . . .
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bfseries Completions



The rational numbers

The rational numbersQ are incomplete.

The sets
�

x ∈Q
�

� x2 < 2
	

�

x ∈Q
�

� x2 > 2
	

partitionQ, but both are open.

Alternatively: the sequence of rationals

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, 1.4142135, 1.41421356, . . .

does not converge to a rational.
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CompletingQ

Definition.
A sequence s : N→Q is Cauchy if for every positive ε ∈Q, there exists
a number N such that for all k ≥ N, |sN − sk|< ε.

Intuition: a sequence is Cauchy if its entries eventually become arbitrarily close.

Definition.
Two sequences s and t are equivalent, written s∼ t, if for every positive
ε ∈Q, there exists an N such that for all k ≥ N, |sk − tk|< ε.

Intuition: two sequences are equivalent if they eventually become arbitrarily close to
each other.
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CompletingQ

Definition.
A sequence s : N→Q is Cauchy if for every positive ε ∈Q, there exists
a number N such that for all k ≥ N, |sN − sk|< ε.

Intuition: a sequence is Cauchy if its entries eventually become arbitrarily close.

Claim.
The sequence

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, 1.4142135, 1.41421356, . . .

is Cauchy. Why?
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The real numbers

We think of the real numbersR asQ plus points in the “gaps.”

Cauchy sequences identify these points.

Definition?
The set of real numbersR is the set

�

s : N→Q
�

� s is Cauchy
	

.
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The real numbers

We think of the real numbersR asQ plus points in the “gaps.”

Cauchy sequences identify these points.

Problem!
Some Cauchy sequences identify the same “points.”

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, 1.4142135, 1.41421356, . . .

2, 1.5, 1.42, 1.415, 1.4143, 1.41422, 1.414214, 1.4142136, 1.41421357, . . .
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Quotients

Definition.
A binary relation is called an equivalence relation if it is reflexive,
symmetric, and transitive.

Definition.
Let S be a set,∼ an equivalence relation on S, and a ∈ S. The
equivalence class of awith respect to∼, denoted JaK, is the set
�

x ∈ S
�

� a∼ x
	

. The quotient of Swith respect to∼, denoted S/∼, is
the set

�

JaK
�

� a ∈ S
	

.
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The real numbers

Definition.
Two sequences s and t are equivalent, written s∼ t, if for every positive
ε ∈Q, there exists an N such that for all k ≥ N, |sk − tk|< ε.

Claim.
The relation∼ is an equivalence relation.

Definition.
The set of real numbersR is the quotient of the set of rational Cauchy
sequences, with respect to∼. We call this the completion ofQ.
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The real numbers

We define addition of sequences in the obvious way.

Claim.
If r1 ∼ r2 and s1 ∼ s2 then r1+ s1 ∼ r2+ s2.

This lets us define addition onR: JrK+ JsK = Jr+ sK.

Similarly for multiplication, etc.
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Question:

In the construction ofR, what was
hardcoded? What can we abstract?



General completions

We can generalize the measure of distance.

Definition.
A sequence s : N→Q is Cauchy if for every positive ε ∈Q, there exists
a number N such that for all k ≥ N, |sN − sk|< ε.
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General completions

We can generalize the measure of distance.

Definition.
A sequence s : N→Q is Cauchy with respect to an absolute value abs if
for every positive ε ∈Q, there exists a number N such that for all k ≥ N,
abs(sN − sk)< ε.

Definition.
A function abs onQ is a (generic) absolute value if it is

positive-definite: abs(0) = 0 and abs(k)> 0 otherwise
subadditive: abs(x+ y)≤ abs(x) + abs(y)
multiplicative: abs(x · y) = abs(x) · abs(y)
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General completions

We can also generalize the base type fromQ to any metric space.

But we’ll focus onQ for today.
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Absolute values onQ

Definition.
A function abs onQ is a (generic) absolute value if it is

positive-definite: abs(0) = 0 and abs(k)> 0 otherwise
subadditive: abs(x+ y)≤ abs(x) + abs(y)
multiplicative: abs(x · y) = abs(x) · abs(y)

Example.

The trivial absolute value onQ is given by

|x|0 =

¨

0 x = 0
1 x 6= 0
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bfseries The p-adic norm



The p-adic valuation

Fix a natural number p> 1.

Definition.
The p-adic valuation νp : Z→ N is defined by

νp(z) =max
�

n ∈ N
�

� pn | z
	

with νp(0) =∞ (or 0, we don’t care for now).

This extends to νp :Q→ Z by setting

νp(q/r) = νp(q)− νp(r)

when q and r are coprime.
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The p-adic norm

νp(z) =max
�

n ∈ N
�

� pn | z
	

νp(q/r) = νp(q)− νp(r)

Definition.
The p-adic norm | · |p :Q→Q is defined by

|x|p =

(

0 x = 0
1

pνp(x)
x 6= 0
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The p-adic norm

Examples.
x ν3(x) |x|3
1 0 1
3 1 1

3
6 1 1

3
18 2 1

9
1
3 -1 3

118098 10 1
59049

118099 0 1
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The p-adic norm

When p is prime, the p-adic norm is an absolute value onQ.

So we can completeQwith respect to | · |p.

The result: the p-adic numbersQp.
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bfseries The p-adic numbers



The p-adic numbers

A real number in base 10 is

±
k
∑

i=−∞
ai · 10i

where k is a (possibly negative) integer and each ai ∈ {0, 1, . . . ,9}.

A p-adic number in base p is

∞
∑

i=k

ai · pi

where k is a (possibly negative) integer and each ai ∈ {0, 1, . . . ,p− 1}.
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The p-adic numbers

Arithmetic inQ5

. . .
1
4
1
4
1
4
1
4
1
4
1
4
1
44

+ 1
0

. . .
1
3
2
1
1
3
2
1
1
3
2
1
1
32

× 3
1

. . .
1
3
1
1
1
3
1
1
1
3
1
1
1
32

+ . . .44444444
. . .31313131
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The p-adic numbers

0

00
000
100
200

10
010
110
210

20
020
120
220

1

01
001
101
201

11
011
111
211

21
021
121
221

2

02
002
102
202

12
012
112
212

22
022
122
222
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Properties of the p-adic norm

The p-adic norm onQ li�s toQp.

(Reason: for any Cauchy sequence s : N→Q, |si|p is eventually
constant.)

Theorem.
The p-adic norms onQ andQp are nonarchimedean. That is, for all x
and y,

|x+ y|p ≤max(|x|p, |y|p).

This simplifies many things in the study ofQp.
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The p-adic integers

A consequence of the nonarchimedean property: if |x|p ≤ 1 and
|yp| ≤ 1, then |x+ y|p ≤ 1.

Definition.
The p-adic integers Zp are the set

�

z ∈Qp
�

� |z|p ≤ 1
	

.

This set forms a ring.
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Hensel’s lemma

Let Zp[X] denote the set of polynomials with coe�icients in Zp.

Theorem.
Suppose that f(X) ∈ Zp[X] and a ∈ Zp satisfy |f(a)|p < |f ′(a)|2p. There
exists a unique z ∈ Zp such that f(z) = 0 and |z− a|p < |f ′(a)|p.
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