Formalizing the *p*-adic Numbers in Lean

Robert Y. Lewis

Vrije Universiteit Amsterdam

Logical Verification lecture December 12, 2019

Motivation

A project at the VU: formalize modern results in number theory, in Lean.

- Develop comprehensive libraries that will help with many results.
- Target "research areas"/collections of moderate difficulty results, instead of single challenge theorems.
- Work on the system and automation alongside the formalizing.

Lean Forward

Number theory starts as "the study of \mathbb{Z} " but quickly goes beyond this.

We need libraries for:

- computations on N, Z, Q, R: divisibility, modularity, factoring, arithmetic, inequalities, ...
- less familiar "number" structures, such as number fields, the p-adic numbers, ...
- univariate and multivatiate polynomials, and related algebra and geometry
- special functions: Dirichlet series, modular forms, ...

Completions

The rational numbers $\ensuremath{\mathbb{Q}}$ are incomplete.

The sets

 $\left\{ x \in \mathbb{Q} \mid x^2 < 2 \right\}$ $\left\{ x \in \mathbb{Q} \mid x^2 > 2 \right\}$

partition \mathbb{Q} , but both are open.

Alternatively: the sequence of rationals

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, 1.4142135, 1.41421356, ...

does not converge to a rational.

Definition.

A sequence $s : \mathbb{N} \to \mathbb{Q}$ is Cauchy if for every positive $\epsilon \in \mathbb{Q}$, there exists a number N such that for all $k \ge N$, $|s_N - s_k| < \epsilon$.

Intuition: a sequence is Cauchy if its entries eventually become arbitrarily close.

Definition.

Two sequences *s* and *t* are equivalent, written $s \sim t$, if for every positive $\epsilon \in \mathbb{Q}$, there exists an *N* such that for all $k \ge N$, $|s_k - t_k| < \epsilon$.

Intuition: two sequences are equivalent if they eventually become arbitrarily close to each other.

Definition.

A sequence $s : \mathbb{N} \to \mathbb{Q}$ is Cauchy if for every positive $\epsilon \in \mathbb{Q}$, there exists a number N such that for all $k \ge N$, $|s_N - s_k| < \epsilon$.

Intuition: a sequence is Cauchy if its entries eventually become arbitrarily close.

Claim.

The sequence

 $1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, 1.4142135, 1.41421356, \ldots$

is Cauchy. Why?

We think of the real numbers \mathbb{R} as \mathbb{Q} plus points in the "gaps."

Cauchy sequences identify these points.

Definition? The set of real numbers \mathbb{R} is the set $\{s : \mathbb{N} \to \mathbb{Q} \mid s \text{ is Cauchy}\}$.

We think of the real numbers \mathbb{R} as \mathbb{Q} plus points in the "gaps."

Cauchy sequences identify these points.

Problem! Some Cauchy sequences identify the same "points." 1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, 1.4142135, 1.41421356, ... 2, 1.5, 1.42, 1.415, 1.4143, 1.41422, 1.414214, 1.4142136, 1.41421357, ...

Definition.

A binary relation is called an equivalence relation if it is reflexive, symmetric, and transitive.

Definition.

Let *S* be a set, ~ an equivalence relation on *S*, and $a \in S$. The equivalence class of *a* with respect to ~, denoted [a], is the set $\{x \in S \mid a \sim x\}$. The quotient of *S* with respect to ~, denoted *S*/~, is the set $\{[a] \mid a \in S\}$.

Definition.

Two sequences *s* and *t* are equivalent, written $s \sim t$, if for every positive $e \in \mathbb{Q}$, there exists an *N* such that for all $k \ge N$, $|s_k - t_k| < e$.

Claim.

The relation \sim is an equivalence relation.

Definition.

The set of real numbers \mathbb{R} is the quotient of the set of rational Cauchy sequences, with respect to \sim . We call this the completion of \mathbb{Q} .

We define addition of sequences in the obvious way.

Claim.

If $r_1 \sim r_2$ and $s_1 \sim s_2$ then $r_1 + s_1 \sim r_2 + s_2$.

This lets us define addition on \mathbb{R} : $\llbracket r \rrbracket + \llbracket s \rrbracket = \llbracket r + s \rrbracket$.

Similarly for multiplication, etc.

Question:

In the construction of \mathbb{R} , what was hardcoded? What can we abstract?

General completions

We can generalize the measure of distance.

Definition.

A sequence $s : \mathbb{N} \to \mathbb{Q}$ is Cauchy if for every positive $\epsilon \in \mathbb{Q}$, there exists a number N such that for all $k \ge N$, $|s_N - s_k| < \epsilon$.

General completions

We can generalize the measure of distance.

Definition.

A sequence $s : \mathbb{N} \to \mathbb{Q}$ is Cauchy with respect to an absolute value abs if for every positive $\epsilon \in \mathbb{Q}$, there exists a number N such that for all $k \ge N$, $abs(s_N - s_k) < \epsilon$.

Definition.

A function abs on ${\mathbb Q}$ is a (generic) absolute value if it is

- positive-definite: abs(0) = 0 and abs(k) > 0 otherwise
- subadditive: $abs(x + y) \le abs(x) + abs(y)$
- multiplicative: $abs(x \cdot y) = abs(x) \cdot abs(y)$

We can also generalize the base type from $\mathbb Q$ to any metric space. But we'll focus on $\mathbb Q$ for today.

Absolute values on \mathbb{Q}

Definition.

A function abs on \mathbb{Q} is a (generic) absolute value if it is

- positive-definite: abs(0) = 0 and abs(k) > 0 otherwise
- subadditive: $abs(x + y) \le abs(x) + abs(y)$
- multiplicative: $abs(x \cdot y) = abs(x) \cdot abs(y)$

Example.

The trivial absolute value on ${\mathbb Q}$ is given by

$$|x|_0 = \begin{cases} 0 & x = 0\\ 1 & x \neq 0 \end{cases}$$

The p-adic norm

The *p*-adic valuation

Fix a natural number p > 1.

Definition.

The *p*-adic valuation $\nu_p : \mathbb{Z} \to \mathbb{N}$ is defined by

 $\nu_p(z) = \max\left\{n \in \mathbb{N} \mid p^n \mid z\right\}$

with $v_p(0) = \infty$ (or 0, we don't care for now).

This extends to $v_p : \mathbb{Q} \to \mathbb{Z}$ by setting

 $\nu_p(q/r) = \nu_p(q) - \nu_p(r)$

when q and r are coprime.

$$v_p(z) = \max\left\{n \in \mathbb{N} \mid p^n \mid z\right\}$$

$$\nu_p(q/r) = \nu_p(q) - \nu_p(r)$$

Definition.

The *p*-adic norm $|\cdot|_p : \mathbb{Q} \to \mathbb{Q}$ is defined by

$$|x|_{p} = \begin{cases} 0 & x = 0\\ \frac{1}{p^{\nu_{p}(x)}} & x \neq 0 \end{cases}$$

The *p*-adic norm

Examples.

Х	$v_3(x)$	$ x _3$
1	0	1
3	1	$\frac{1}{3}$
6	1	$\frac{1}{3}$
18	2	$\frac{1}{9}$
$\frac{1}{3}$	-1	3
118098	10	<u>1</u> 59049
118099	0	1

When p is prime, the p-adic norm is an absolute value on \mathbb{Q} .

So we can complete \mathbb{Q} with respect to $|\cdot|_p$.

The result: the *p*-adic numbers \mathbb{Q}_p .

A real number in base 10 is

$$\pm \sum_{i=-\infty}^{k} a_i \cdot 10^i$$

where k is a (possibly negative) integer and each $a_i \in \{0, 1, \dots, 9\}$.

A *p*-adic number in base *p* is

$$\sum_{i=k}^{\infty} a_i \cdot p^i$$

where k is a (possibly negative) integer and each $a_i \in \{0, 1, \dots, p-1\}$.

Arithmetic in \mathbb{Q}_5

111111111111111111111111111111111111	3	212121 1313132	11111111 31313132
+0	×	3	$+ \frac{444444444}{31313131}$

The *p*-adic norm on \mathbb{Q} lifts to \mathbb{Q}_p .

(Reason: for any Cauchy sequence $s : \mathbb{N} \to \mathbb{Q}$, $|s_i|_p$ is eventually constant.)

Theorem.

The *p*-adic norms on \mathbb{Q} and \mathbb{Q}_p are nonarchimedean. That is, for all *x* and *y*,

 $|x+y|_{p} \le \max(|x|_{p}, |y|_{p}).$

This simplifies many things in the study of \mathbb{Q}_p .

A consequence of the nonarchimedean property: if $|x|_p \le 1$ and $|y_p| \le 1$, then $|x + y|_p \le 1$.

Definition.

The *p*-adic integers \mathbb{Z}_p are the set

 $\left\{z \in \mathbb{Q}_p \mid |z|_p \le 1\right\}.$

This set forms a ring.

Let $\mathbb{Z}_p[X]$ denote the set of polynomials with coefficients in \mathbb{Z}_p .

Theorem.

Suppose that $f(X) \in \mathbb{Z}_p[X]$ and $a \in \mathbb{Z}_p$ satisfy $|f(a)|_p < |f'(a)|_p^2$. There exists a unique $z \in \mathbb{Z}_p$ such that f(z) = 0 and $|z - a|_p < |f'(a)|_p^2$.