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Abstract. Many problems in mathematics and computer science in-
volve summations. We present a procedure that automatically proves
equations involving finite summations, inspired by the theory of holo-
nomic sequences. The procedure is designed to be interleaved with the
activities of a higher-order automatic theorem prover. It performs an
induction and automatically solves the induction step, leaving the base
cases to the theorem prover. We show how to integrate the procedure
with superposition, satisfiability modulo theories, and tableaux.

1 Introduction

Finite summations—that is, summations
∑n

i=m ti over finitely many terms ti—
are ubiquitous in mathematics and computer science, but they are poorly sup-
ported by automatic theorem provers. One reason is that summations are higher-
order, whereas most theorem provers are first-order.

In recent years, we have seen the rise of higher-order provers, such as cvc5 [2],
E [26], Leo-III [23], Vampire [3], veriT [2], and Zipperposition [25]. With these
provers, a summation

∑n
i=m ti can be represented as sum m n (λi. ti); the

traditional
∑

syntax can be seen as syntactic sugar for a λ-term. But despite
the use of heuristics [25, Sect. 4], higher-order provers are ill-equipped to reason
inductively. A simple problem such as

∑n
i=0 i = n(n + 1)/2 is a formidable

challenge for them, even if we include axioms for +, ·, /, and
∑

together with
an induction principle.

In this report, we introduce a procedure for proving such equations in a
higher-order prover. The procedure is triggered by a proof goal of the form
k
∑

s+ t = u, possibly with some conditions (Sect. 2). In a refutational prover,
the equation would be negated, as k

∑
s + t ̸= u, and would correspond to the

negated conjecture, a problem axiom, or some clause derived by the prover.
Our procedure translates facts about summations to linear recurrences. These

recurrences have almost the same form as multivariate holonomic sequences [28],
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which, while not being a prerequisite for reading this paper, strongly inspired our
work. Each recurrence is associated with a multivariate sequence—a sequence
with one or more indices. In this report, the word “sequence” generally means
“multivariate sequence.”

The procedure has three steps.

1. Initialization (Sect. 3): Heuristically choose terms in the goal to generalize
and perform induction on. Among the problem axioms, select those of a
suitable form as initial recurrences for the procedure.

2. Propagation (Sect. 4): From the initial recurrences, compute recurrences cor-
responding to the goal. For +, ·, and

∑
expressions occurring in the goal,

recurrences are computed from the recurrences of their direct subexpressions.

3. Induction (Sect. 5): If the final recurrences for the goal involve only the goal
and no other sequences, use them for induction. If they make the difference of
successive values of k

∑
s+ t−u constantly 0, this establishes the induction

step. Then reduce the goal to a set of base cases and give these to the prover.

Propagation and induction apply holonomic-style techniques almost as a black
box. Initialization connects them to the overall proof search.

For example, to prove
∑n

i=0 i = n(n + 1)/2, the procedure would transform
the equation into recurrences and find out that the difference

∑n
i=0 i−n(n+1)/2

remains constant as n increases, thereby establishing the induction step. If that
difference is constantly 0, we get

∑n
i=0 i = n(n + 1)/2; in general, it suffices to

prove a number of base cases, which are left to the prover. This example is very
simple, but the procedure scales up to more sophisticated problems (Sect. 6).
An implementation is under way in the Zipperposition prover [25].

The procedure treats
∑

as an interpreted (built-in) symbol. The summation
expression evaluates to a value in a commutative group, or a ring if ring multipli-
cation is present. The commutative group or ring gives us +, ·, and −. These are
also interpreted, as are numerals. Integers, including indices, can multiply group
elements. Based on the interpretation, we use the forms t = u and t − u = 0
interchangeably.

Compared with Wilf–Zeilberger pairs [27] and other methods (Sect. 7), the
main benefit of our procedure is that it goes beyond holonomic sequences and
supports both uninterpreted functions and an infinite number of base cases. Our
procedure is widely applicable and may help prove not only difficult summations
in a restrictive form but also easier summations in a more general form, which
is useful in a general-purpose theorem prover. At the heart of our work is the
novel combination of techniques from superposition and holonomic sequences,
which is visible both in the prover integration (Sect. 2) and in the computation
of so-called excess terms (Sect. 4).

2 Inference Rules

Our procedure can be integrated into various types of theorem provers, where it
takes the form of an inference rule that complements the prover’s existing rules.
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We present such a rule for provers based on the superposition calculus and briefly
discuss a similar integration with two other proof calculi: satisfiability modulo
theories (SMT) and tableaux.

2.1 Superposition

Superposition is a calculus for classical first-order logic. It reasons about formulas
in conjunctive normal form, or clauses, that contain the equality predicate. It can
be viewed as a generalization of the Knuth–Bendix completion procedure [17] to
clausal first-order logic.

Superposition is highly successful; the first-order division of the CADE ATP
Systems Competition (CASC) [24] has been dominated by a superposition prover
since 2002. The calculus has been extended to higher-order logic, as combinatory
superposition [4] and λ-superposition [25]. Zipperposition, based on λ-super-
position, has won in the higher-order division of CASC in 2020, 2021, and 2022.

Superposition is a refutational calculus: Starting from the negation of the
conjecture taken as an axiom, it tries to derive a contradiction—the empty, false
clause ⊥. This is achieved by saturation: systematically deriving consequences
of existing clauses, aiming to eventually derive ⊥.

The calculus consists of inference rules that generate new clauses based on
the presence of suitable premises in the clause set. The premises of a rule are
shown above a horizontal bar; the derived conclusion is shown below the bar. We
extend superposition with a rule that interfaces with our summation procedure:

C1 · · · Cl C ′ ∨ t[s⃗ ] ̸= 0
Summation

D ∨ C ′ ∨
∨

b⃗∈B t[⃗b ] ̸= 0

(By commutativity of ∨ and =, the rule also applies to a rightmost premise of
the form t′[s⃗ ] ̸= t[s⃗ ] ∨ C ′, for example.) The following side conditions apply:

• t[s⃗ ] is an expression that can be brought into the general form k
∑n

i=m t′+t′′

using the group properties (e.g., t[s⃗ ] could be 3−
∑n

i=0 n
i), or using the ring

properties if t[s⃗ ] is known to be in a ring;
• the procedure selects, generalizes and performs an induction on the subterms
s⃗ of t[s⃗ ] (Sect. 3.2);

• the procedure succeeds at proving the induction step based on initial recur-
rences derived from the premises C1, . . . , Cl (Sect. 3.4) and propagation of
these recurrences (Sect. 4);

• the procedure identifies B as the finite set of base cases of the induction,
where each case is a vector b⃗ of terms (not necessarily numerals) of the same
length as s⃗ (Sect. 5); and

• the subclause D captures potential conditions determined by the procedure.

It can also be useful to make the rule less prolific by requiring that t[s⃗ ] ̸= 0
is eligible for superposition inferences, a notion that is defined in the standard
superposition calculus. In the rule’s conclusion, the notation t[⃗b ] stands for the
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term t[s⃗ ] in which the distinguished occurrence of each subterm si, where si is

among the components of s⃗, is replaced by the corresponding term bi from b⃗. For
example, if t[u1, u2] = g u1 u2, s⃗ = (f a, a), and b⃗ = (0, 1), then generalization
would transform t[f a, a] = g (f a) a into t[0, 1] = g 0 1.

The intuition behind the rule is that the conclusion, which is only about a
finite set of base cases, should be easier to refute than the rightmost premise.
Sometimes the set B of base cases might even be empty, meaning that the
procedure needed no induction. As for the premises C1, . . . , Cl, they can contain
useful information about s⃗, often about bounds.

Example 1. Consider the goal ∀n. n ≥ 0 −■→
∑n

i=0 i = n(n + 1)/2. Clausifica-
tion produces two clauses: n ≥ 0 and

∑n
i=0 i ̸= n(n + 1)/2 where n is a Skolem

constant. The following inference applies our procedure to solve the induction
step of the second premise:

n ≥ 0
∑n

i=0 i ̸= n(n+ 1)/2
Summation∑0

i=0 i ̸= 0(0 + 1)/2 ∨
∑1

i=0 i ̸= 1(1 + 1)/2 ∨
∑2

i=0 i ̸= 2(2 + 1)/2

The induction is on the subterm n, which is generalized to a variable. The pro-
cedure generates three base cases, for n ∈ {0, 1, 2}. These are easy to reduce to
falsity using superposition’s simplification machinery and basic equations that
expand finite sums. Built-in arithmetic procedures, as found for example in Vam-
pire [13] and Zipperposition [12], can easily reason about the arithmetic expres-
sions. At the end, the prover derives the empty clause ⊥.

2.2 Other Proof Calculi

Besides superposition, our procedure can be integrated into other proof calculi.
We briefly sketch integrations into higher-order versions of SMT and tableaux.

SMT solvers [2] combine a SAT solver, which decides propositional logic,
and theory solvers. One theory solver is the congruence closure, which decides
the theory of equality over uninterpreted functions; for example, from a = b, it
infers that f a = f b. The congruence closure maintains a partition of terms in
equivalence classes. In addition, it keeps track of disequations.

When the congruence closure becomes aware of a disequation t[s⃗ ] ̸= 0 where
t[s⃗ ] can be brought into the general form k

∑n
i=m t′+ t′′, the envisioned integra-

tion would invoke our procedure and, on success, add the implication

t[s⃗ ] ̸= 0 −■→ D ∨
∨
b⃗∈B

t[⃗b ] ̸= 0

to the set of clauses to refute, where D, B, and s⃗ are as for superposition. This
implication can safely be added regardless of the current SAT model, because
it is a tautology in the theory of summations. Even though it is not a decision
procedure, in this respect the integration would behave like a theory solver. The
procedure could use any initial recurrences derived from clauses C1, . . . , Cl found
in the current set of clauses.
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As for tableaux [7], an integration would work as follows. Whenever a clause
C ′ ∨ t[s⃗ ] ̸= 0 emerges in a leaf node of the proof tree, where t[s⃗ ] can be brought
into the form k

∑n
i=m t′ + t′′, the integration would invoke our procedure and,

on success, add the clause D ∨ C ′ ∨
∨

b⃗∈B t[⃗b ] ̸= 0 next to C ′ ∨ t[s⃗ ] ̸= 0 in the
current leaf, where D, B, and s⃗ are as above. The procedure could use any initial
recurrences derived from clauses C1, . . . , Cl found in the branch containing the
current leaf.

3 Initialization

The first step of our procedure is to recognize the structure of recurrences. Vari-
ables on which we can perform induction appear as Skolem constants in the
negated goal. Further opportunities for induction can be created by generalizing
complex terms. Also as part of this step, we must choose which terms represent
(multivariate) sequences and which clauses represent their recurrences.

3.1 Theory Detection

We require the necessary theory of summation to be predefined, either as a
specially tagged subset of the input or as a theory that is hard-coded in the
prover. Specifically, this refers to the inductive theory of integers, axioms for
commutative groups (including multiplication by integers), and the definition of

summation from 0 by
∑−1

n=0 fn = 0 and
∑m+1

n=0 fn =
∑m

n=0 fn + fm+1 even for
negative m ∈ Z. Other finite intervals than [0,m] are expressible as differences:∑m

n=k fn =
∑m

n=0 fn −
∑k−1

n=0 fn.

Ring multiplication may be absent, so we do not take it as predefined. In-
stead, we search candidate binary operators from the negated goal. Often mul-
tiplication candidates would have the form f l r where l and r are left and right
operands, respectively, but we generally allow the form f a⃗ l b⃗ r c⃗ with a func-
tion symbol f and variable-free term tuples a⃗, b⃗, c⃗. This form is motivated by
the encoding of types as parameters (e.g., mul real l r) and lifting of operations
(e.g., lift mulreal l r) to quotients, products, etc. For each candidate, we can try
to prove left and right distributivity by syntactically looking for that axiom or
by running another instance of the prover. Distributivity is the only necessary
property to apply the procedure, but associativity, commutativity, and the unit
element can also be used in simplifications.

3.2 Term Generalization

Term generalization transforms Skolem constants or complex terms into variables
and then performs an induction on the variables. We propose a straightforward
heuristic: For each nonnumeral subterm s of type Z occurring in the negated goal,
generalize s if s stays variable-free even after recursively applying this heuristic
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on the proper subterms of s itself. For example, in the following variable-free
integer terms, the underlined subterms would be generalized:

a 123 f 0 2 2f (g (−1)) (−3a) f 1 (g (a+ 1)) f (g a) 7a

Let s⃗ = (s1, . . . , sd) be the subterms chosen for generalization. Then, based
on the negated goal C ′ ∨ t[s⃗ ] ̸= 0 (as in the Summation rule), generalization
sets up the goal ∀n⃗ ∈ N. t[n⃗] = 0 where N ⊆ Zd collects the bounds of s⃗ (often
N = Nd). We try to prove this goal up to base cases and other mild conditions.

The generalization makes it possible to use induction to prove that the goal
sequence term t[n⃗]—a function of n⃗—equals zero on N . We try to prove the
generalized goal assuming ¬C ′ and some extra conditions E such as the base
cases of the induction. Then, instantiating n⃗ := s⃗, we conclude C ′ ∨ ¬E ∨ t[s⃗ ] =
0. This, together with the negated goal C ′ ∨ t[s⃗ ] ̸= 0, implies a conclusion of
the form C ′ ∨ ¬E for the Summation rule. Note that C ′ is not generalized.

The set N embodies knowledge about s⃗ that we find among existing clauses
C1, . . . , Cl and the condition ¬C ′. The free variables of ¬C ′ are interpreted as
constants, and they can also occur in s⃗. For example, assume that s⃗ = f s′ and
n⃗ = n are singletons and that the generalized goal contains the factorial n!. Its
recurrence must be in a conditional clause—e.g., (m+ 1)! = (m+ 1)m! ∨ 0 ̸≤ m.
To use this recurrence for n!, we need n ≥ 0, which we can ensure using N if we
find a bounding clause f s′ ≥ 0 or its generalization such as f m ≥ 0 where m
is a free variable. The more we know about s⃗, the more recurrences we can get.
At the same time, N must allow induction, so we keep it convex by considering
only coordinatewise bounds of s⃗.

3.3 Form of sequence terms

Sequence terms are terms of the underlying higher-order logic that our proce-
dure can work with. From their structure, we distinguish (pointwise) addition
and multiplication, summation, and affine substitution. This gives a first-order
grammar to express the sequence terms.

Definition 2. Sequence terms on a ring A are inductively defined as follows.
The logic’s terms of type A with distinguished integer variables n⃗ are sequence
terms. If fn⃗ and gn⃗ are sequence terms with d variables n⃗, then so are fn⃗ + gn⃗,

fn⃗ · gn⃗,
∑c⃗•n⃗+a

i=0 f{nj 7→i}n⃗, and σfn⃗ = fσn⃗ where c⃗ is a vector, a is an integer,
c⃗ • n⃗ = c1n1 + · · ·+ cdnd, and σ is an affine substitution (meaning σm⃗ = qm⃗+ b⃗
for a matrix q and a vector b⃗); a, the entries of c⃗, and the entries of σ (meaning

the entries of q and b⃗) must be numerals.

Remark 3. In Definition 2 and in the sequel, a commutative group can be
used instead of a ring if ring multiplication is absent. In this case, all formulas
involving ring multiplication (e.g., fn⃗ · gn⃗) should be ignored.

We view sequence terms as functions Zd → A, so in particular natural number
indices must be extended. For example, the factorial n! for n ∈ N can be extended
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as 0 onto the negative integers by replacing its recurrence n!−n(n−1)! = 0 with
n ·n!−n2(n−1)! = 0 and adding the initial value (−1)! = 0. This multiplication
by n is necessary to make a cut at 0 and avoid the contradiction 1 = 0! =
0 · (−1)! = 0. We then write the sequence terms from the definition compactly as
f+g, f ·g,

∑a
j f , and σf , and call a = c⃗• n⃗+d an affine variable sum. Moreover,

since ·,
∑a

j , and σ all distribute over +, we can write any sequence term as

c1f
1+· · ·+ckf

k where the coefficients cj are numerals and the sequence terms f j

are distinct and do not contain +. Finally, we forbid variable shadowing:
∑a

nj=0

binds nj , and while
∑a

j

∑b
j g and

∑nj

j g and other references to nj outside
∑a

j

are syntactically valid, we avoid such forms by renaming them during encoding
and never reintroducing them.

3.4 Choice of Initial Recurrences

Semantically, the recurrences we look for are multivariate heterogeneous linear
finite-fixed-step equations with polynomial coefficients. An archetypical example
is

(n2 + 1)fn+2,m+1 +mfn+1,m = nmfn,m+1 − 2hn,m + (m− n)hn,m+1 + 1 (1)

Here, the sequences f, h, 1 are bivariate, and the sequence indices are all of the
form n+ k or m+ k for numerals k ∈ Z, amounting to finite fixed steps.

The general form is 0 = P1g
1 + · · ·+ Pkg

k = P⃗ • g⃗ where g⃗ = (g1, ..., gk) is a

tuple of sequence terms and P⃗ is a tuple of operator polynomials as defined below.
If k = 1, we have a homogeneous recurrence of g1; otherwise, it is heterogeneous.

Definition 4. Operator polynomials are a Z-algebra with composition as prod-
uct (meaning closed under addition, composition, and integer multiplication)
spanned by the multiplier and shift operators:

• The multiplier operator Mj of index j multiplies a multivariate sequence f
by the variable nj of index j: (Mjf)n⃗ = njfn⃗.

• The shift operator Sj = {nj 7→ nj + 1} of index j increments the variable
nj of index j of a multivariate sequence f by one: (Sjf)n⃗ = f{nj 7→nj+1}n⃗.

With d index variables, the operator polynomials look like ordinary polyno-
mials Z[M1, ...,Md, S1, ..., Sd], but the composition product is noncommutative
since SiMi = MiSi + Si for all i = 1, . . . , d (a derivation of which is given in
the next section directly above equation (2)). As an example of expressing re-
currences in terms of operator polynomials, consider the previous archetypical
recurrence (1). Taking n as the first and m as the second variable, the recurrence
reads

((M2
1 + 1)S2

1S2 +M2S1 −M1M2S2) · f + (2− (M2 −M1)S2) · h+ (−1) · 1 = 0

Remark 5. The expression P⃗ • g⃗ identifying a recurrence is itself a sequence
term. It suffices to observe that if f is a sequence term, then so are the substi-
tution Sjf and the product Mjf = (n⃗ 7→ nj) · f with the projection sequence
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term n⃗ 7→ nj . If we are not in a ring setting, the integer-group product is still a
bihomomorphism, which is all that we need in the sequel.

As sketched in Sect. 1, we must select some of the problem axioms as initial
recurrences for the procedure. This is accomplished as follows. Let there be an
edge between two axioms of the form C ∨ s = t (where C may be empty) if they
both contain a top-level occurrence of the same sequence g, i.e., an occurrence of
g that is not nested inside an uninterpreted function symbol. The axioms then
form a graph. We take as initial recurrences the connected component of the
generalized goal.

By a sequence g, we mean the f a⃗ part of a term of the form f a⃗ n⃗ where f is
an uninterpreted function symbol, a⃗ is a tuple of variable-free terms, and n⃗ is a
nonempty tuple of integer variables or affine (i.e., linear term + constant term)
combinations of them. The tuples a⃗ and n⃗ may in general be interleaved.

In other contexts, an analogous step is known as lemma filtering or premise
selection [5, Sect. 2]. Clutter from irrelevant facts is less of an issue in the context
of our procedure because it can use only linear recurrences. Beyond this, our
simple heuristic does nothing to avoid clutter.

What should we do about conditions such as C in C ∨ f a⃗ n⃗ = t? In an
implementation, there would be at least three ways to cope with them:

• We could forbid them and work only with unit equations such as f a⃗ n⃗ = t.

• We could collect them and put them in the D component of the Summation
rule’s conclusion.

• We could attempt to prove them when the initial recurrences are selected.

In our ongoing implementation, we chose the first option, but what the best
option is remains an open question.

4 Propagation

Holonomic sequences can be defined by homogeneous recurrences with polyno-
mial coefficients and finitely many base cases. They are closed under the four
operations that build sequence terms (+, ·,

∑a
j , σ), which especially makes their

equality decidable [28]. The closure is realized by four procedures to derive re-
currences of a sequence term from the recurrences of its immediate subterms,
which we call propagation. We can propagate independently of the base cases
and hence work on nonholonomic sequence terms [10]. Although we expect the
holonomic subcase to be decidable in our setting, in general decidable equality
is lost. Additionally, unlike in the holonomic setting, we allow heterogeneous re-
currences. We will build this into our noncommutative Gröbner basis setup that
is used in the propagation procedures.

4.1 Gröbner Bases of Recurrence Operators

A (generalized) Gröbner basis is a certain well-behaved generating set of a left-
ideal of (possibly noncommutative) polynomials. Equivalently, we will view it
as a system of polynomial equations that is complete for rewriting. Given a
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polynomial equation P = 0, for every monomial M we get a rewrite rule as
follows. Decompose MP as MP = L + R where L is the leading monomial of
MP w.r.t. a fixed monomial ordering times its coefficient. Then L = −R gives
rise to a rewrite rule L → −R. A system of equations is complete for rewriting
if every one of its consequences can be proved via rewriting by these rules.

Example 6. The system {ab2 = a+ b, a2b = a+ 1} does not prove its conse-
quence a2 = b by rewriting. (We can see that a2 = b is a consequence by
multiplying the first equation by a and the second equation by b and then by
subtracting the two equations.) In the other direction, the system’s Gröbner ba-
sis {a2 = b, b2 = a+ 1} does give rewrite proofs ab2 −−−−−→

b2=a+1
a2 + a −−−→

a2=b
b+ a

and a2b −−−→
a2=b

b2 −−−−−→
b2=a+1

a+ 1.

A theory of Gröbner bases exists for various polynomial algebras [16]. In our
setting, a simple sufficient requirement is that all indeterminates X,Y commute
up to lower-order terms: XY −Y X ∈ ZX+ZY +Z. The operator polynomials of
Definition 4 fall into this category with the natural choice of taking all multiplier
and shift operators as indeterminates. Indeed, for any sequence term f , we have
the noncommutation relations

(SjMjf)n⃗ = (Sj(n⃗ 7→ njfn⃗))n⃗ = (nj + 1)(Sjf)n⃗ = ((MjSj + Sj)f)n⃗

and all other pairs of multipliers and shifts commute exactly. That is:

SiMj = MjSi + δi,jSi SiSj = SjSi MiMj = MjMi (2)

for all i and j, where δi,j denotes the Kronecker delta, which equals 1 if i = j
and 0 otherwise. When we consider a formal polynomial algebra (necessary to
perform Gröbner basis computations), we will usually mean polynomials with
integer coefficients and indeterminates M1,M2, . . . , S1, S2, . . . satisfying (2). Ex-
ceptionally, when we use propagation to substitution, we will consider compo-
sitions of shifts formally as further individual indeterminates, as explained in
Sect. 4.3. Apart from this exceptional setting, we fix a choice of monomials as
follows.

Definition 7. In our setting, a monomial is a polynomial of the form Mx1
1 · · ·

Mxd

d Sy1

1 · · ·Syd

d where the exponents xj , yj ∈ N are numerals.

Due to the (non)commutation relations (2), polynomials can be written as
sums of monomials times their integer coefficients. This makes working with
these noncommutative polynomials similar to working with commutative ones.
A major difference is that monomials are not closed under product, as illustrated
by S1·M1 = M1S1+S1. This complicates the definition of monomial order below,
which in turn defines how to interpret a polynomial equation as a rewrite rule.

Definition 8. A monomial order ≼ is a well-founded total order on monomials
such that for all monomials A,B,C, if A ≼ B, then the leading monomial of CA
is ≼-smaller than the leading monomial of CB; here, the leading monomial of a
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nonzero polynomial P means the ≼-largest monomial occurring in P . (Compare
this with the term order in superposition, which is well founded and compatible
with contexts.)

Buchberger’s algorithm to compute Gröbner bases (also in a noncommutative
context) is similar to saturation-based theorem proving. It repeatedly derives
from polynomial equations P = 0 and R = 0 new equations AP −BR = 0 where
coefficient–monomial products A,B make the leading monomials of AP and BR
cancel. It suffices to take A,B with smallest total degree and coprime coefficient.
A and B play a similar role to the most general unifier in superposition. Since
Sj is semantically bijective, we can and always do cancel it, replacing SjR = 0
by R = 0. Unlike many saturation procedures, this modified completion into
a Gröbner basis always terminates. The standard termination proof reduces to
applying noetherianity of commutative polynomials over Z or Dickson’s lemma
[16].

The similarity with superposition eases presentation and implementation of
Gröbner bases in the context of superposition provers. Hence, we will present
propagations as applications of elimination by Gröbner bases. Other methods
can be an order of magnitude faster on complicated propagations [18]; however,
we do not know what would work best in practice on average cases in a theorem
prover.

A single operator polynomial P1 perfectly encodes a linear homogeneous re-
currence 0 = P1g of a sequence term g. However, we allow any heterogeneous
recurrence of the form 0 = P⃗ • f⃗ = P1f

1 + · · ·+ Pkf
k where f⃗ = (f1, . . . , fk) is

an arbitrary tuple of different sequence terms. We can encode this by a single op-
erator polynomial for the duration of one Gröbner basis computation as follows.
Without loss of generality, let f⃗ enumerate exactly once all the sequence terms
needed to express the current recurrences with the help of operator polynomials.
Let f⃗ depend on d variables. For each f j , we consider a shift Fj := Sd+j w.r.t. a

so far unused variable. Then the operator polynomial P⃗ • F⃗ encodes 0 = P⃗ • f⃗ .
This encoding does not respect the semantics of operator polynomials; to

recover it, we must apply the substitution {F⃗ 7→ f⃗}. However, products such
as F1F2 remain uninterpretable even with ring-valued sequences because the
operator product—function composition—is different from multiplication of f j ’s.
Hence, we will simply discard uninterpretable polynomials after the Gröbner
basis computation. Moreover, from now on, we will freely write f j for Fj .

Definition 9. Let X1, . . . , Xn be an enumeration of all multiplier and shift
indeterminates. An (X1, . . . , Xk)-elimination order is a monomial order such
that Xj ≻ X

ak+1

k+1 · · ·Xan
n for all indices j ≤ k and all exponents ak+1, . . . , an ∈ N.

Our default choice for the elimination order is to first compare the total de-
gree overX1, . . . , Xk, then compare the total degree overXk+1, . . . , Xn, and then
break ties by comparing the n-tuples of exponents lexicographically, considering
smaller exponents as larger [11, Chapter 2 §2].
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Procedure 10. Eliminating indeterminates X1, . . . , Xk from a finite system of
equations E means computing a Gröbner basis G of E w.r.t. an (X1, . . . , Xk)-
elimination order and then discarding all polynomials from G that contain any
of X1, . . . , Xk or that are not linear in the indeterminates encoding sequence
terms. (As mentioned above, during the Gröbner basis computation, whenever
we derive a polynomial SjR, we replace it by R.)

While in principle any Gröbner basis would suffice for elimination, our default
choice is to compute the reduced Gröbner basis (i.e., the fully simplified one).
The nonlinear polynomials can be discarded as soon as they are derived during
the Gröbner basis computation instead of only at the end.

Recurrence equations produced by elimination are logical consequences of
the input equations. To see this, observe that 0 = P⃗ • f⃗ implies 0 = AP⃗ • f⃗
for every operator monomial A before the encoding. Hence, multiplication by
monomials that do not contain Fj ’s has the correct semantics. The monomials

of any encoded polynomial P⃗ • F⃗ have the same total degree in the Fj ’s, i.e.,

P⃗ • F⃗ is homogeneous in the Fj ’s. Now homogeneity in the Fj ’s is preserved by
monomial multiplication and monomial canceling addition. Moreover, these op-
erations never lower the degree of homogeneity (i.e., the total degree in the Fj ’s).
Consequently, Buchberger’s algorithm derives only polynomials homogeneous in
the Fj ’s, and linear interpretable ones are never derived from the nonlinear unin-
terpretable ones. This proves that a Gröbner basis G computed by Buchberger’s
algorithm has the desired property that polynomials linear in the Fj ’s, when
interpreted as equations, are logical consequences of the input equations. Then
every other Gröbner basis has this desired property as well because G rewrites
their elements to 0 and rewriting preserves homogeneity in the Fj ’s.

Despite the formally equivalent roles of all sequence terms f i in the recurrence
0 = P⃗ • f⃗ , we associate with every recurrence a sequence term f j . It is often
convenient to write such a recurrence of f j as Pjf

j+e = 0 where the excess terms

e = P⃗•f⃗−Pjf
j contain all sequence terms f i except f j . The choice of f j among f⃗

will be determined by the definition of excess terms (Definition 20). However, this
choice remains irrelevant for the individual propagation steps, described below.
We adapt these steps from the four closure properties of holonomic sequences
by carrying excess terms along.

4.2 Propagation to Addition

Procedure 11. Let f and g be sequence terms, and let h be the formal name of
their addition f+g. The associated recurrences F of f and G of g are propagated
to those of h by eliminating f and g from F ∪G∪{h = f + g}. (By Procedure 10,
this involves computing a Gröbner basis for these equations and then discarding
the equations containing f or g as well as the corresponding nonlinear terms.)

Actually, the same propagation technique works if f + g is replaced by any
expression in the general recurrence format P⃗ • l⃗ (a dot product of operator

polynomials P⃗ and sequence terms l⃗). The key is that the defining equation
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h = P⃗ • l⃗ is again a linear recurrence. Such propagations could also be done by
iterating more primitive propagations.

Example 12. Consider the goal
∑n

j=0 aj = gn + a0 given g0 = 0 and gn+2 =
gn+an+1+an+2 for all n ∈ N. The defining recurrence of g can be written using
the operator polynomials as S2

1g = g+S1a+S2
1a. The defining recurrence of the

sum fn :=
∑n

j=0 aj is S1f = f+S1a. We must prove that hn := gn+a0−fn is 0.
To achieve this, we propagate recurrences to h using the elimination procedure
described above (Procedure 10) and the total-degree-based (f, g)-elimination or-
der with f ≺ g. Leading monomials are shown in bold:

0 = S2
1g − g − S1a− S2

1a recurrence of g

−S2
1 0 = g + a0 − f − h definition of h

0 = −g − S1a− S2
1a− a0 + S2

1f + S2
1h

−S1 0 = S1f − f − S1a recurrence of f

0 = −g − S1a− a0 + S2
1h+ S1f

− 0 = S1f − f − S1a recurrence of f

0 = −g − a0 + S2
1h+ f

+ 0 = g + a0 − f − h definition of h

0 = S2
1h− h

In this example, hn+2−hn = 0 is the only recurrence that does not contain f and
g, so we discard the rest of the Gröbner basis calculation. Since hn+2 − hn = 0
contains only the sequence h, we can use it to prove the induction step (of size
2) of a proof of ∀n. hn = 0. We are then left with the two base cases h0 = 0 and
h1 = 0, which the Summation inference would include in its conclusion without
auxiliary symbols (f and h) as

∑0
j=0 aj ̸= g0 + a0 ∨

∑1
j=0 aj ̸= g1 + a0.

4.3 Propagation to Substitution

Consider a numeral matrix a = [akj ]kj ∈ Zd×D and a vector b⃗ ∈ Zd. They

characterize an affine substitution σ = {n⃗ 7→ an⃗+ b⃗} = {nk 7→
∑D

j=1 akjnj + bk
| 1 ≤ k ≤ d}. As an operator on sequences, σ performs an affine change of
variables: (σf)n⃗ = fan⃗+b⃗. We restrict our substitutions to affine ones to remain
within the propagation framework.

Clearly, any recurrence Pf = 0 of f implies σPf = 0. Moreover, if σP = P ′σ,
then P ′σf = 0 gives a recurrence of σf . Finding such an operator polynomial
P ′ for a general P can be reduced to finding an operator polynomial P ′

X sat-
isfying σX = P ′

Xσ for every indeterminant X. This amounts to pushing all
indeterminates X leftwards. The relevant formula is

P =

T∑
k=1

ck

( tk∏
j=1

Xkj

)
fk =⇒ P ′ =

T∑
k=1

ck

( tk∏
j=1

P ′
Xkj

)
fk
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For multipliers, we have σ(M1, . . . ,Md) = (a(M1, . . . ,MD) + b⃗)σ. In contrast,
shifts are easily pushed only rightwards—namely, Sjσ = σS

a1j

1 · · ·Sadj

d . This
holds because, using the notation g|m⃗ = gm⃗, we have

Sjσf |n⃗ = σf |{nj 7→ nj + 1}n⃗ = f |(a{nj 7→ nj + 1}n⃗+ b⃗) =

= f |((an⃗)k + akj + b⃗k)
d

k=1
= f |((an⃗+ b⃗)k + akj)

d

k=1
=

= S
a1j

1 · · ·Sadj

d f |(an⃗+ b⃗) = σS
a1j

1 · · ·Sadj

d f |n⃗

Consequently, the recurrences of f must be first expressed in terms of the com-
posite shifts Sj := S

a1j

1 · · ·Sadj

d . As operators, these satisfy the (non)commuta-
tion relations

SjMk = (Mk + akj)Sj SiSj = SjSi SiSj = SjSi (3)

This makes the Sj ’s suitable as indeterminates in Gröbner basis computations.
Accordingly, for propagation to substitution, we enlarge our formal polyno-

mial algebra to also contain the indeterminates S1,S2, . . . satisfying the rela-
tions (3), while also keeping (2). We note that, as operators, the indeterminates
further satisfy (essentially by definition) the relations

Sj
∏

k: akj<0

S
|akj |
k =

∏
k: akj>0

S
akj

k for j ∈ {1, . . . , D} (4)

While we could have defined our polynomial algebra to incorporate these rela-
tions as well, we chose to not do this, thereby creating a distinction between
the semantic operators and the syntactic polynomial algebra. Instead, we add
these relations to the system of recurrence equations of which we compute the
Gröbner basis. Finally, we extend our notion of monomial from Definition 7 to
mean any polynomial of the form Mx1

1 · · ·Mxd

d Sy1

1 · · ·Syd

d Sz11 · · · SzDD where the
exponents xj , yj , zj ∈ N are numerals.

Procedure 13. Recurrences of a sequence term f are propagated to its affine
substitution (σf)n⃗ = fan⃗+b⃗ as follows, using the extended polynomial algebra
described above. Eliminate each Sk from the system of polynomial equations
containing both the recurrences of f and the relations (4). Every resulting re-

currence P (M⃗, S⃗)f + e = 0 implies a recurrence P (aM⃗ + b⃗, S⃗)σf +σe = 0 of σf
where we have collected the indeterminates into vectors and where e are excess
terms that do not contain f .

All shifts in σe, including composite ones, are interpreted as substitutions.

Example 14. Consider the formula
∑n2

n1=0

(
n1

n2−n1

)
= Fn2+1 where the Fibo-

nacci numbers are defined by F1 = F2 = 1 and (S2
1 − S1 − 1)F = 0. For the

binomial coefficient
(·
·
)
n1,n2

=
(
n1

n2

)
= n1!

n2!(n1−n2)!
, the recurrence from Pascal’s

triangle reads in variable-free notation as (S1S2 − S2 − 1)
(·
·
)
= 0 and extends(

n1

n2

)
from 0 ≤ n2 ≤ n1 to all integers n2 and natural numbers n1. Moreover, we
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have
(
n1

n2

)
= n1

n2

(
n1−1
n2−1

)
or equivalently ((M2 + 1)S1S2 −M1 − 1)

(·
·
)
= 0. (These

recurrences could be propagated from the recurrence of the factorial, except
that our procedure cannot handle the domain extension.) We want to propagate
these recurrences to the substitution σ = {n1 7→ n1, n2 7→ n2 − n1}. We have
S1σ = σS1S

−1
2 and S2σ = σS2. So we introduce for S1S

−1
2 and S2 the new

indeterminates S1 and S2 whose characterizing recurrences (4) read

(S1S2 − S1)
(·
·
)
= 0 (i) (S2 − S2)

(·
·
)
= 0 (ii)

Next, we eliminate S1, S2 in favor of S1,S2. Here, (ii) immediately rewrites every
S2 to S2 and then (i) becomes (−S1 + S1S2)

(·
·
)
= 0, which rewrites every S1.

The remaining steps to complete a Gröbner basis w.r.t. some total-degree order
are irrelevant for what we want to illustrate. We factor the result for readability:

(−S1 + S1S2)
(·
·
)
= 0 (−S2 + S2)

(·
·
)
= 0

(S1S22 − S2 − 1)
(·
·
)
= 0 ((M2 + 1)S2 −M1 +M2)

(·
·
)
= 0

((M1 + 1)S1S2 − (M1 −M2 + 2)S1 −M1 − 1)
(·
·
)
= 0

((M1 −M2 + 1)(M1 −M2 + 2)S1 −M1M2 −M2)
(·
·
)
= 0

Now σ maps the lowest four recurrences to recurrences of fn1,n2
=

(
n1

n2−n1

)
below:

(S1S
2
2 − S2 − 1)f = 0 ((M2 −M1 + 1)S2 − 2M1 +M2)f = 0

((M1 + 1)S1S2 − (2M1 −M2 + 2)S1 −M1 − 1)f = 0

((2M1 −M2 + 1)(2M1 −M2 + 2)S1 − (M1 + 1)(M2 −M1))f = 0

The next step is to propagate to the summation. We postpone it to Example 18,
after we have presented the required theory.

4.4 Propagation to Product

Let · be ring multiplication or more generally a group bihomomorphism. If the
sequence terms f and g depend on disjoint sets of variables, recurrences of fg =
f · g are essentially a union of recurrences of f and g. Namely, let Pf + e = 0 be
any recurrence of f where P is an operator polynomial on the variables of f and
the excess terms e do not contain f . Then P (fg)+eg = 0 because g is effectively
a constant to P , and similarly for recurrences of g. With the help of this special
case, propagation to product can be reduced to propagation to substitution, as
explained below.

Procedure 15. Let f and g be sequence terms parameterized by the variables
n⃗ = (nj)

d
j=1. Let m⃗ = (nj+d)

d
j=1 be a tuple of fresh variables. The recurrences

of f and g are propagated to their pointwise product fg in two steps. First, the
recurrences of the variable-disjoint product fn⃗gm⃗ are the union of the recurrences
of fn⃗ multiplied on the right by gm⃗ and of those of gm⃗ multiplied on the left by
fn⃗. Then the recurrences of fn⃗gn⃗ = {m⃗ 7→ n⃗}(fn⃗gm⃗) are found by propagating
to substitution using Procedure 13.
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4.5 Propagation to Summation

We finally consider as the last type of propagation the summations
∑n2

n1=0 fn⃗.
Without loss of generality, we assume that the variables are numbered so that
the sum acts on the first two. Similarly to above, we consider the consequence∑n2

n1=0 Pfn⃗ +
∑n2

n1=0 en⃗ = 0 of a recurrence Pf + e = 0 of the sequence term
f where P is an operator polynomial and e are excess terms. We want to find
an operator polynomial P ′ such that

∑n2

n1=0 P becomes P ′ ∑n2

n1=0 up to excess
terms. Like for substitutions, finding such a P ′ for P can be reduced to finding
an operator polynomial P ′

X satisfying
∑n2

n1=0 X = P ′
X

∑n2

n1=0 up to excess terms

for every indeterminant X. The result will be a recurrence P ′ ∑n2

n1=0 fn⃗+ e′ = 0

of
∑n2

n1=0 fn⃗.

Procedure 16. Recurrences of a sequence term f are propagated to its sum∑n2

n1=0 fn⃗ as follows. First, eliminate multipliers M1 from all recurrences of f .

Every resulting recurrence Pf + e = 0 implies
∑n2

n1=0 Pfn⃗ +
∑n2

n1=0 en⃗ = 0.
Here, P is an operator polynomial that does not contain M1, and the excess
terms e do not contain f . Next, each of these recurrences is rewritten into the
form P ′ ∑n2

n1=0 fn⃗ + E0 + En2 +
∑n2

n1=0 en⃗ = 0 where P ′ is an operator poly-
nomial and the Em’s are part of excess terms built by applying some operator
polynomials and the substitution {n1 7→ m} to f . This is achieved by commuting∑n2

n1=0 with indeterminates other than S1 and S2. These two indeterminates are
instead handled by the formulas

n2∑
n1=0

S1gn⃗ =

n2∑
n1=0

gn⃗ + {n1 7→ n2 + 1}gn⃗ − {n1 7→ 0}gn⃗

n2∑
n1=0

S2gn⃗ = S2

n2∑
n1=0

gn⃗ − S2{n1 7→ n2}gn⃗

Remark 17. The summation
∑n2

n1=0 fn⃗ is defined if fn⃗ is defined when 0 ≤
n1 ≤ n2. This does not imply that

∑n2

n1=0 Pfn⃗ is defined because P could shift n1

more than n2. Consequently, one might have to consider for example
∑n2−2

n1=0 Pfn⃗
instead and add f(n2, n2 − 1, . . .)+ f(n2, n2, . . .) retroactively. This is awkward;
we assume instead that sequence terms are globally defined. A similar issue
affects propagation to substitution.

Example 18. Let us continue the proof of
∑n2

n1=0

(
n1

n2−n1

)
= Fn2+1 from Exam-

ple 14. There we found for the summand fn1,n2
=

(
n1

n2−n1

)
a recurrence (S1S

2
2 −

S2−1)f = 0. It is actually the only recurrence after eliminating M1 as a first step
of propagation to summation. Next, we set S1 to 1 using a telescoping identity:

n2∑
n1=0

S1S
2
2f =

n2∑
n1=0

S2
2f + {n1 7→ n2}S1S

2
2f − {n1 7→ 0}S2

2f
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Then we push the remaining shifts S2 leftwards:

n2∑
n1=0

(S2
2 − S2)f = S2

n2∑
n1=0

(S2 − 1)f − S2{n1 7→ n2}(S2 − 1)f

= (S2
2 − S2)

n2∑
n1=0

f − S2
2{n1 7→ n2}f − S2{n1 7→ n2}(S2 − 1)f

Hence, in total we have

n2∑
n1=0

(S1S
2
2 − S2 − 1)f − (S2

2 − S2 − 1)

n2∑
n1=0

f

= {n1 7→ n2}S1S
2
2f − {n1 7→ 0}S2

2f − S2
2{n1 7→ n2}f − S2{n1 7→ n2}(S2 − 1)f

=
(
n2+1

1

)
−
(

0
n2+2

)
−
(
n2+2

0

)
−

(
n2+1

1

)
+
(
n2+1

0

)
=����(

n2+1
1

)
− 0 − 1 −����(

n2+1
1

)
+ 1 = 0

Since (S1S
2
2 − S2 − 1)f = 0, we have (S2

2 − S2 − 1)
∑n2

n1=0 f = 0. Now this is
the same recurrence that the shifted Fibonacci numbers Fn2+1 satisfy and hence
the final propagation to difference gives (S2

2 − S2 − 1)(
∑n2

n1=0 f − Fn2+1) = 0.
This proves an induction step of size 2 and leaves two base cases that can be
discharged by a theorem prover.

We can derive closed formulas for the summation propagation result after
elimination of multiplication M1 by the sum’s index variable. This can help un-
derstand the form of the result while the recursive formulas of Procedure 16 re-
main a viable way to compute it. The telescoping formula amounts to Euclidean
division of polynomials by S1 − 1 (where S1 commutes with remaining indeter-
minates because M1 is eliminated). Namely, if P (S1) = (S1 − 1)Q(S1) + P (1),
then P (S1)fn⃗ + en⃗ = 0 implies

−
n2∑

n1=0

en⃗ =

n2∑
n1=0

P (S1)fn⃗ =

n2∑
n1=0

((S1 − 1)Q(S1)fn⃗ + P (1)fn⃗)

= {n1 7→ n2 + 1}Q(S1)fn⃗ − {n1 7→ 0}Q(S1)fn⃗ +

n2∑
n1=0

P (1)fn⃗.

Here, all terms except the last summation can be considered as excess to be
eliminated later. The operator polynomial P (1) now contains neither M1 nor S1.

Concerning the second identity, let σ = {n1 7→ n2}. Then, for example

n2∑
n1=0

S3
2fn⃗ = S2

n2∑
n1=0

S2
2fn⃗ − S2σS

2
2fn⃗

= S2
2

n2∑
n1=0

S2fn⃗ − S2
2σS2fn⃗ − S2σS

2
2fn⃗

= S3
2

n2∑
n1=0

fn⃗ − S2(S
2
2σ + S2σS2 + σS2

2)fn⃗
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and in general
∑n2

n1=0 S
a
2fn⃗ − Sa

2

∑n2

n1=0 fn⃗ = −S2

∑a−1
j=0 S

j
2σS

a−1−j
2 fn⃗. Since

S2σ = σS1S2, we can rewrite this as

S2

a−1∑
j=0

Sj
2σS

a−1−j
2 =

a−1∑
j=0

σSj+1
1 Sa

2 = σ
Sa
1 − 1

S1 − 1
S1S

a
2 = σ

(S1S2)
a − Sa

2

S1 − 1
S1.

So by linearity, for P (S2) containing neither M1 nor S1 we have

n2∑
n1=0

P (S2)fn⃗ − P (S2)

n2∑
n1=0

fn⃗ = −σ
P (S1S2)− P (S2)

S1 − 1
S1fn⃗.

Combining the previous formulas, we can write propagation of a recurrence
0 = P (S1, S2)fn⃗ + en⃗ in the form

0 = P (1, S2)

n2∑
n1=0

fn⃗ + {n1 7→ n2}
P (S1, S2)− P (1, S2)

S1 − 1
S1fn⃗

− {n1 7→ 0 }P (S1, S2)− P (1, S2)

S1 − 1
fn⃗

− {n1 7→ n2}
P (1, S1S2)− P (1, S2)

S1 − 1
S1fn⃗

+

n2∑
n1=0

en⃗

= P (1, S2)

n2∑
n1=0

fn⃗ + {n1 7→ n2}
P (S1, S2)− P (1, S1S2)

S1 − 1
S1fn⃗

− {n1 7→ 0 }P (S1, S2)− P (1, S2)

S1 − 1
fn⃗ +

n2∑
n1=0

en⃗

4.6 Iteration on Excess Terms

Let g be the term from the negated goal to be proved to be 0. After propagating
along the structure of g, we end up with recurrences of the form Pg = e where
P is an operator polynomial and the excess terms e do not contain g. In the
holonomic case, e will be syntactically 0. We have also observed that e is often
0 in the nonholonomic case as well. But if e is not syntactically 0, then Pg = e
cannot immediately be used for a proof by induction. A solution is to iterate a
full series of propagations with e in place of g to find P2e = e2 and conclude
P2Pg = P2e = e2, then repeat as long as necessary. This process will always
terminate, although it might fail to find recurrences. So in general, we propagate
to ej−1 to find Pjej−1 = ej , conclude Pj · · ·P2Pg = ej , and repeat until we
encounter an ek = 0.

We will impose an order on the sequence terms to accomplish three things.
First, we get a proper definition of which terms in a recurrence are excess. Second,
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well-foundedness of the order will guarantee termination of the iteration of full
propagations to excess terms. Third, the iterations can be interleaved with basic
normalizations such as {n1 7→ 2n1}M1{n1 7→ 3n1+1}f → 2M1{n1 7→ 6n1+2}f .

Definition 19. The spine of a sequence term f without addition, denoted by
spine f , is the sequence term obtained intuitively by erasing operator polynomials
from f . Precisely, this means fully reducing f by the rewrite rules

at → t Mjt → t {n⃗ 7→ bn⃗+ c⃗}t → {n⃗ 7→ bn⃗}t
∑c⃗•n⃗+a

j t →
∑c⃗•n⃗

j t

where a, c⃗, and the matrix b are all numeric.

As substitutions, shift indeterminates mix with other substitutions, which ex-
plains the last two rules. For example, spine {n1 7→ 2n1}M1{n1 7→ 3n1 + 1}f =
{n1 7→ 2n1}{n1 7→ 3n1}f . If we have a sequence term c1g

1 + · · · + ckg
k with

addition, it contains multiple spines, one for each gj . The significance of spines
is that when we derive a more complex consequence from a recurrence (during
elimination by applying an operator polynomial to it), its spines do not become
more complex.

We can easily describe how each propagation step changes the spines of the
involved sequence terms. Propagation to the addition f +g produces only spines
ef and eg in the resulting recurrences, where ef denotes a spine of a term from
a recurrence of f and analogously for eg. Moreover, propagation to the sub-
stitution σf produces σef , propagation to the product fg produces (spine f)eg
and ef (spine g), and propagation to the summation

∑n2

n1=0 f produces {n1 7→ 0}
(spine f), {n1 7→ n2}(spine f), and

∑n2

n1=0 ef , where ef and eg are as above.

Since term orders are compatible with contexts, comparing spines using a
term order will almost automatically keep excess terms smaller than the main
terms over propagation steps. This is an invariant we want to impose. Given
how spines change under propagation, it suffices to additionally require that the
term order satisfies

∑a
j t > σt for substitutions σ and sequence terms t. Below

we consider a more specific term order, which will be able to orient simplification
rules as well.

Definition 20. Fix a Knuth–Bendix order with argument coefficients [19] with
exactly three weights W

∑a
n=0 > W (·) > 3Wσ > 0 and all argument coef-

ficients set to 2. Moreover, projection sequence terms corresponding to Mj ’s
(Remark 5) must have equal weights, and substitutions with fewer bindings
must have lower precedence than those with more bindings. The excess (partial)
order on addition-free sequence terms is obtained by comparing the spines of
terms using this fixed order. Excess terms of a recurrence are all its nonmaximal
sequence terms w.r.t. the excess order.

The weights for the excess order are arranged to be compatible with nor-
malization, which pushes substitutions to the leaf nodes of the term tree and
pulls summations towards the root. The resulting normal form is simply the
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typical way of writing terms without explicit substitutions. It is also the nor-
mal form of the rewrite system consisting of the applicable associativity and/or
commutativity rules of · as well as the following rules:

s ·
∑a

j t →
∑a

j st 1t, t1, {}t → t

(
∑a

j s) · t →
∑a

j st (σ ∪ {nj 7→ a})u → σu

σ
∑a

j t →
∑σa

j σt (σ ∪ {nj 7→ a})Mj → a∑c
j t → {nj 7→ 0}t+ · · ·+ {nj 7→ c}t σ(ts) → σt · σs∑−c

j t → −{nj 7→ −1}t− · · · − {nj 7→ 1− c}t σσ′t → (σ ◦ σ′)t

where s, t, u are sequence terms, u does not contain the variable nj , a is an
affine variable sum, Mj = n⃗ 7→ nj is a projection sequence term, σ, σ′ are affine
substitutions, and the numeral c is nonnegative.

These rules produce additions, which must be interpreted as follows. For any
rule above of the general form t0 → c1t1+· · ·+cktk, the actual rewrite on the level
of entire recurrences is f [t0]+R = 0 → c1f [t1]+· · ·+ckf [tk]+R = 0 where cj are
numerals, the sequence terms f [tj ] are equal except for the distinguished subterm
tj , and R is the sum of the remaining terms in the recurrence. This is analogous
to how monomial reductions lift to polynomials in Gröbner basis theory.

To conclude termination, it suffices to prove that t0 dominates each of t1, . . . ,
tk individually. Let us proceed down the right column. The first rule triple (1t, t1,
{}t → t) is trivial. In the second rule, by assumption removing a binding from
a substitution σ ∪ {nj 7→ a} lowers its precedence. The third rule needs only
(σ ∪ {nj 7→ a})Mj > Mk for all j, k, which holds because Mj and Mk have the
same weight. For the fourth rule, the only duplicating rule σ(ts) → σt·σs requires
Wσ+2(W (·) + 2(Wt+Ws)) > W (·)+ 4Wσ+4Wt+4Ws, which is equivalent
to the assumption W (·) > 3Wσ. For the last rule, combining substitutions σ
and σ′ into one σ ◦ σ′ decreases the weight. The rules on the left column are
similarly oriented by the assumed weight order. While comparing spines first,
these orientations remain, although they might be nonstrict.

4.7 The Question of Completeness in the Holonomic Case

We do not know if our procedure is complete in the holonomic case— that is, if
it propagates enough recurrences to reduce deciding equality to a finite number
of base cases for any holonomic atomic sequence terms. Since our method is
closely related to the holonomic decision procedure, one could have expected
that proving completeness in our setting would be easy to achieve. However,
there are several issues that prevented us from proving completeness.

The main issue arises in connection with propagation to substitution. It is not
related to the unusual algebra of the compound shifts, but rather to the change—
especially the reduction—of the number of variables. Indeed, we do not even
know if propagation to {n1 7→ 0} is complete. For {n1 7→ 0}, the compound shifts
are simply all Sj for j ≥ 2 and the propagation procedure can be reformulated
as follows: Eliminate S1 and replace M1 by 0 in the remaining recurrences.
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Example 21. Consider the operator polynomials {M1(S1 − 1), M1(S2 − 1),
S1(S2 − 1)}, which form a Gröbner basis (w.r.t. any monomial order). If a se-
quence f satisfies the corresponding recurrences, f is holonomic. Namely, using
first M1(S1 − 1) and then S1(S2 − 1), we get f1,0 = f1+n1,0 = f1+n1,n2 and sim-
ilarly f0,0 = f−n1,0 = f−n1,n2

for n1 ∈ N and n2 ∈ Z. Hence f is determined by
only two base cases (namely, f1,0 and f0,0) and is therefore holonomic.

Now consider propagation to {n1 7→ 0}fn⃗. If we discard recurrences contain-
ing S1, we are left with M1(S2 − 1)f = 0. But replacing M1 by 0 here gives
the triviality 0 = 0, leading to no recurrences for {n1 7→ 0}fn⃗. In general, the
replacement is the issue that this entire subsection is about. In this example, we
recover thanks to the requirement that shifts are canceled during elimination,
because then S1(S2 − 1) yields S2 − 1, and this operator polynomial gives us a
useful recurrence for {n1 7→ 0}fn⃗.

In the same way that propagation to {n1 7→ 0} eliminates S1 and replaces M1

by 0, propagation to
∑

n1
eliminates M1 and replaces S1 by 1 (and adds excess

terms). However, with
∑

n1
, if replacement would map a recurrence to 0, we can

avoid the problem thanks to the identity M1(S1 − 1)− (S1 − 1)(M1 − 1) = −1.
Using this, we see that an ill-behaved recurrence (S1 − 1)R = 0 implies

0 = M1(S1 − 1)R = (S1 − 1)(M1 − 1)R−R

where (S1 − 1)(M1 − 1)R will map to 0, leaving R = 0. Higher powers of S1 − 1
are canceled by iterating this. For {n1 7→ 0}, there is no similar identity PM1 −
M1P

′ = −1; this can be seen by applying it to δn1,0 and evaluating at n1 = 0.
The above standard argument works even better in the differential setting

[10,18,28]. There differentiation ∂j w.r.t. variable nj of index j takes the place of
the shift Sj . Propagation to integration

∫
dn1 is secured by M1∂1−∂1M1 = −1,

and to substitution {n1 7→ 0} by −∂1M1 −M1(−∂1) = −1. In fact, the proper
theory of holonomicity exists in the differential setting and merely translates to
the discrete in the coefficients of the power series of functions. Then the discrete
substitution {n1 7→ −1} corresponds to contour integration around 0. However,
only ∂1 cancels when integrating, whereas the discrete M1+1 corresponds to the
differential product ∂1M1 (because ∂

∂z z(fkz
k) = (k + 1)(fkz

k)). In other words,
a Gröbner basis of our shifty operator polynomials contains different, possibly
worse, information than a Gröbner basis of differential polynomials that actually
define the holonomicity.

We still expect that our procedure is complete. To support this, fix a transcen-
dental constant q and consider the Z-algebra spanned by shifts and exponential
multipliers qnj (instead of nj , also known as Mj). For the substitution {n1 7→ 0},
we observe the same issue that qn1 − 1 is replaced by 0 and uncancellable.
However, using homological algebra, Sabbah proved that substitution—with a
compound shift indeterminate based method—preserves holonomicity in this al-
gebra [21]. In the analytic limit q → 1, we also have (qnj − 1)/(q − 1) → nj , and
we obtain our operator polynomial algebra. Unfortunately, this observation tells
us nothing about the computational behavior of operator polynomials and their
Gröbner bases.
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5 Induction

After propagation, we consider all recurrences Pg = 0 of the goal sequence
term g to be proved to be 0. In exceptionally fortunate cases, the operator
polynomial P is ±1 and we are unconditionally done because, for any group, the
multiplication-by-±1 map is invertible. This happens when the objective is to
prove a recurrence that this method derives as a substep anyway. Otherwise, we
apply induction and leave as conditions the base cases as well as invertibility of
the multiplication maps associated with the leading monomials’ coefficients.

A common case is that variables range over natural numbers and we have a
final recurrence with leading shift Sb1

1 · · ·Sbd
d w.r.t. any monomial order. Then the

values
⋃d

j=1{n⃗ ∈ Nd | nj < bj} suffice for the base cases, as a union of stacked
hyperplanes that is infinite unless d ≤ 1, but it corresponds to only

∑d
j=1 bj

one-variable substitutions {nj 7→ a} for 1 ≤ j ≤ d and 0 ≤ a < bj . If our eager
generalization produced variables that do not participate in their induction (i.e.,
their bj ’s are 0), they are replaced back to their original values.

If there is more than one applicable final recurrence, we take the intersection
of their base value sets w.r.t. the same monomial order. To see that it works,
consider any point outside the intersection. It is a nonbase point w.r.t. some
final recurrence and hence the induction step can be taken by the recurrence. If
recurrences have different side conditions, then there might not be an optimal
combination of base cases and conditions but rather many incomparable options
to choose from.

To represent the intersection as substitutions, we distribute it over the hyper-
plane stack unions. This results in a union of hyperline stacks of the form
N(J, b⃗) := {n⃗ ∈ Nd | nj < bj for all j ∈ J} where J ⊆ {1, . . . , d} and b⃗ vary.
One such stack is represented by

∏
j∈J bj substitutions {nj 7→ aj | j ∈ J} where

the aj ’s are chosen arbitrarily such that 0 ≤ aj < bj . Unfortunately, distribution
duplicates some base cases. To compensate, if I ⊆ J and b⃗ ≥ c⃗ pointwise, then
N(I, b⃗) ⊇ N(J, c⃗), so that N(J, c⃗) can be removed in favor of N(I, b⃗).

If a variable n ∈ Z is unbounded, we perform two inductions on the rays:
0 ≤ n and n < b if b base cases are needed. The backward induction on n < b
can be transformed into a forward induction on natural numbers starting from
0 by the change of variables n 7→ b− 1− n.

6 Examples

Our procedure can prove the induction step of holonomic sequence formulas such
as Example 14, the binomial formula:

(a+ b)
h
=

h∑
n=0

(
h
n

)
anbh−n

(
a+b
h

)
=

h∑
n=0

(
a
n

)(
b

h−n

)
Heterogeneous recurrences, which are beyond the holonomic fragment, enable
proving elementary general sequence formulas such as Example 12 and the fol-
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lowing:
h∑

n=0

fh−n =

h∑
n=0

fn

k∑
h=0

h∑
n=0

fh,n =

k∑
n=0

k∑
h=n

fh,n

If we ignore the holonomic base case requirements, we can for example prove
the induction steps of Abel’s binomial formula and of some Stirling number
identities:

(a+ b)
h
=

h∑
n=0

(
h
n

)
a(a− n)

n−1
(b+ n)

h−n
hk/h! =

h∑
n=0

{kn}/(h− n)!

Here, the Stirling numbers of the second kind {kn} are one of many special non-
holonomic sequences that frequently arise in combinatorics. They count the num-
ber of partitions of a k-element set into n subsets.

Example 22. As further demonstration, we apply our procedure to the last
equation. For convenience, we will use the name of a variable also to denote its
multiplier operator. Moreover, we will use the uppercase version of the name of
a variable to denote its shift operator. The defining recurrence of the Stirling
numbers then reads (KN − (n+ 1)N − 1){kn} = 0 for k, n ≥ 0, where K and N
denote the shift operators for the variables k and n, the first n denotes the mul-
tiplier for the variable n, and the second n is the variable itself. This recurrence
is complemented by the initial values {00} = 1 and {n0} = {0n} = 0 if n ̸= 0.

Starting from the right, the inverse m!−1 of the factorial satisfies the re-
currence (mM +M − 1)m!−1 = 0 that holds for all m ∈ Z by extension. This
must be found in the initialization step because there is no propagation to di-
vision. Propagation to the substitution {m 7→ h− n} then gives the following
recurrences, factored for clarity:

((h− n+ 1)H − 1)(h− n)!−1 = 0 (N − h+ n)(h− n)!−1 = 0

To propagate to product, we consider {k1

n1
} and (h2 − n2)!

−1 with variables
renamed apart. We must propagate to the substitution {nj 7→ n, hj 7→ h,

kj 7→ k | j ∈ {1, 2}} the recurrences of {k1

n1
}(h2 − n2)!

−1 given by the following
five operator polynomials:

K1N1 − (n1 + 1)N1 − 1 and H1 − 1 from {k1

n1
}

(h2 − n2 + 1)H2 − 1, N2 − h2 + n2, and K2 − 1 from (h2 − n2)!
−1

We added here the trivial recurrences given by H1 − 1 and K2 − 1 implied by
the independence from h1 and k2. Among the defining recurrences (4) of the
compound shift indeterminates N,H,K, the recurrence H1H2 −H simplifies to
H2 −H by H1 − 1 and K1K2 −K to K1 −K by K2 − 1. (In other words, the
factorwise renaming of already disjoint variables h and k amounts to renam-
ing in the entire product.) The third compound shift recurrence, N1N2 − N ,
simplifies to (h2 − n2)N1 − N by N2 − h2 + n2. The part of the Gröbner ba-
sis with only compound shifts is then straightforwardly finished with the result
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{KN − (n1 + 1)N − h2 + n2, (h2 − n2 + 1)H − 1}. Hence this propagation step
yields

(KN − (n+ 1)N − h+ n)
{kn}

(h− n)!
= 0 ((h− n+ 1)H − 1)

{kn}
(h− n)!

= 0

To sum over n, we first eliminate n from the previous two recurrences and
conclude (H(K − h) + (N − 1)(KH − (h+ 1)H + 1))({kn}/(h− n)!) = 0. The
sum has natural boundaries, meaning that the summand vanishes outside them.
This guarantees that there will be no excess terms, which we also tediously
discover when pulling out the indeterminates:

h∑
n=0

(N − 1)

P︷ ︸︸ ︷
(KH − (h+ 1)H + 1)

{kn}
(h− n)!

= P
({ k

h+1}
(−1)!

−
{k0}
h!

)
= −{k+1

0 }/(h+ 1)! + {k0}((h+ 1)H − 1)h!−1 = 0
h∑

n=0
H(K − h)

{kn}
(h− n)!

−H(K − h)
h∑

n=0

{kn}
(h− n)!

= −(K − h)
{ k
h+1}
(−1)!

= 0

Here, by the recurrence of the inverse of the factorial, we get (−1)!−1 = 0. So we

obtain a recurrenceH(K − h)
∑h

n=0{
k
n}/(h− n)! = 0 for the left-hand side of our

goal. For the right-hand side, we unproblematically obtain (K − h)(hk/h!) = 0.

Hence H(K − h) zeros out the difference hk/h!−
∑h

n=0{
k
n}/(h− n)!.

The largest shift HK of the operator H(K − h) determines that the two
sets of base cases h = 0 and k = 0 are sufficient for induction. Unlike in the
holonomic setting, the base cases are not necessarily easier than the original
formula. Hence, we leave the base cases to the prover. Here, the first case h = 0
is easy because the sum becomes a single term. On the other hand, when k = 0
the sum retains its variable length of h + 1, but the nonholonomic factor {kn}
simplifies to its initial value {0n}. With these initial values, only the term with
n = 0 remains, while generally we might have to repeat Summation.

Example 23. Let a, b ∈ R be reals and h ∈ N be a natural number. We prove

(a+ b)
h
=

h∑
n=0

(
h

n

)
anbh−n

For the sake of conciseness, let us use only the recurrence of
(
h
n

)
that already

lacks multiplication by n—namely, (HN −N − 1)
(
h
n

)
= 0 from Pascal’s triangle.

To propagate to the product
(
h
n

)
an we rename variables n apart as n1 and n2,

and proceed to eliminate their shifts N1 and N2 from

HN1 −N1 − 1 N2 − a N1N2 −N

Here N1N2 −N is the defining relation (4) for the compound shift N . Immedi-
ately, N2−a rewrites N1N2−N to aN1−N . A superposition a(HN1 −N1 − 1)−
H(aN1 −N) = HN−aN1−a leaves a conclusion that is rewritten toHN−N−a
by aN1 −N , completing the propagation.
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We find the obvious recurrences (bN − 1)bh−n = 0 and (H − b)bh−n = 0 by
propagation to substitution. To propagate to the final product

(
h
n

)
an · bh−n we

rename like above and eliminate N1, N2, H1, H2 from the operator polynomials

H1N1 −N1 − a
bN2 − 1
H2 − b

N1N2 −N
H1H2 −H

The top-row polynomials give N1−bN , which rewrites H1N1−N1−a to bH1N−
bN − a. The bottom-row polynomials give bH1 − H, and one rewrite later we
conclude (HN − bN − a)(

(
h
n

)
anbh−n) = 0.

The propagation to summation
∑h

n=0 will map N 7→ 1 in the recurrence
of the main term, giving H − b − a, which also annihilates the left-hand side
(a+ b)

h
. Finally, we check that the excess terms become 0:

0 =

h∑
n=0

(HN − bN)
((h

n

)
anbh−n

)
=

h∑
n=0

(H − b)
((h

n

)
anbh−n

)
+

+ {n 7→ h+ 1}(H − b)
((h

n

)
anbh−n

)
− {n 7→ 0}(H − b)

((h
n

)
anbh−n

)
=

=

h∑
n=0

(H − b)
((h

n

)
anbh−n

)
+

(
h+ 1

h+ 1

)
ah+1 − 0−

(
h+ 1

0

)
bh+1 + b

(
h

0

)
bh =

= (H − b)

h∑
n=0

(
h

n

)
anbh−n −

(
h+ 1

h+ 1

)
ah+1 + ah+1 = (H − b)

h∑
n=0

(
h

n

)
anbh−n

Hence the operator polynomial H − b − a annihilates (meaning maps to 0)

the entire difference (a+ b)
h−

∑h
n=0

(
h
n

)
anbh−n. For induction, the leading shift

monomial ofH−b−a isH. Hence an induction step of size 1 w.r.t. h is guaranteed
to succeed. The base cases are obtained by substituting {h 7→ 0}, and a theorem
prover can check them by direct simplification.

Example 24. We prove Vandermonde’s convolution formula(
a+ b

h

)
=

h∑
n=0

(
a

n

)(
b

h− n

)

The textbook proof is to expand the three binomial powers in (x+ 1)
a+b

=

(x+ 1)
a
(x+ 1)

b
and then match the like powers of x. Since both sides of the

summation formula are polynomials in a and b, it must hold for a and b taken
from any commutative ring. Our recurrence propagation procedure can directly
work in this full generality by only considering recurrences in n and h.

We start from ((n+1)N + n− a)
(
a
n

)
= 0. This propagates to

(
b

h−n

)
= {a 7→ b,

n 7→ h−n}
(
a
n

)
as ((h− n+ 1)H + h− n− b)

(
b

h−n

)
= 0 and (HN − 1)

(
b

h−n

)
= 0
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with monomial order such thatH < N . Next, to propagate to product we rename
n as n1 and n2, and proceed to eliminate N1 and N2 from

(n1 + 1)N1 + n1 − a
(h− n2 + 1)H + h− n2 − b

HN2 − 1
N1N2 −N

From HN2 − 1 and N1N2 − N we derive N1 − HN that rewrites the leftmost
operator polynomial leading to the result

(n1 + 1)HN + n1 − a (h− n2 + 1)H + h− n2 − b

where we then identify n1 and n2. After this identification, if nH is the leading
monomial of the right polynomial, it could rewrite the leading monomial nHN
of the left polynomial. This shows that the final result of propagation steps need
not be a Gröbner basis, which is unproblematic. Instead, we start with that
rewrite when propagating to summation

∑h
n=0 next. The result of the rewrite

is n − a + (h+ 1)H +N(h− n− b). Its leading monomial nN superposes with
nH of (h− n+ 1)H + h− n− b because we must eliminate n. After simplifying
the result, we get

(H + 1)((h+ 1)H + h− a− b)− bH(N − 1)

which does not contain n. In the first term, (h+ 1)H +h− a− b annihilates the
left-hand side

(
a+b
h

)
of the goal equation, while the second term −bH(N − 1)

maps to 0 when N maps to 1. This implies that the final operator polynomial
we get is (H + 1)((h+ 1)H + h− a− b), but we must also check that the excess
terms become 0.

The excess term computation is routine but lengthy. We omit it because we
know that it succeeds by the following argument. The sum

∑h
n=0

(
a
n

)(
b

h−n

)
has

so-called natural boundaries, meaning that the summand is 0 outside the inter-
val [0, h]. Hence the summation range [0, h] can be extended without changing
the value of the sum or the value of the excess terms that depends on the sum.
However, excess terms are found by evaluation at the end points of the sum-
mation range. When the range is extended enough (by about the degree of the
operator polynomial), it becomes obvious that the excess terms equal 0.

Example 25. Let f be group-valued and h be a natural number. We prove

Lh :=

h∑
n=0

fh−n =

h∑
n=0

fn =: Rh

Let us start with the substitution on the left-hand side. If h − n = k, then
(h+ 1) − n = k + 1 and h − (n+ 1) = k − 1, so H = K and N = K−1 define
the relevant compound shifts. The latter equation, N = K−1, translates to the
polynomial NK − 1, which simplifies to NH − 1 when K is eliminated by the
equation H = K. So we conclude (NH − 1)fh−n = 0.
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Next, we push the indeterminates leftwards to propagate to the summation
Lh =

∑h
n=0 fh−n and simplify the excess terms as we proceed:

0 =

h∑
n=0

(NHfh−n − fh−n) = {n 7→h+1}Hfh−n −Hfh−0 +

h∑
n=0

(Hfh−n − fh−n)

= f0 −Hfh −Hfh−h + (H − 1)

h∑
n=0

fh−n = −Hfh + (H − 1)Lh

Hence (H − 1)Lh − Hfh = 0. Since we also have (H − 1)Rh = Hfh, the final
propagation to difference gives (H − 1)(Rh − Lh) = 0. The rest of the proof is
routine.

Example 26. Let f be group-valued and k be a natural number. We prove

Lk :=

k∑
h=0

lh︷ ︸︸ ︷
h∑

n=0

fh,n =

k∑
n=0

rk,n︷ ︸︸ ︷
k∑

h=n

fh,n =: Rk

First consider the left-hand side Lk. Trivially, (K − 1)lh = 0 with K denoting a
shift w.r.t. k. This recurrence has no multiplication by h, so we directly proceed
to pull it over

∑k
h=0 to get a recurrence for Lk:

0 =

k∑
h=0

(Klh − lh) = −K{h 7→ k}lh + (K − 1)

k∑
h=0

lh = −Klk + (K − 1)Lk

Next, consider the right-hand side Rk. Recall that rk,n can be expressed in

terms of summations from 0 as
∑k

h=0 fh,n −
∑n−1

h=0 fh,n. Nevertheless, the con-
stancy recurrence (K − 1)fh,n = 0 propagates as above, yielding (K − 1)rk,n −
Kfk,n = 0. To propagate from rk,n to Rk, we pull the shift K over

∑k
n=0 as

follows:

0 =

k∑
n=0

(Krk,n − rk,n −Kfk,n)

= −Krk,k + (K − 1)

k∑
n=0

rk,n +Kfk,k −K

k∑
n=0

fk,n

= −Krk,k + (K − 1)Rk +Kfk,k −Klk

Here the excess term −Krk,k simplifies and cancels Kfk,k:

−Krk,k = −
k+1∑
h=0

fh,k+1 +

k+1−1∑
h=0

fh,k+1 =

= −fk+1,k+1 −
k∑

h=0

fh,k+1 +

k∑
h=0

fh,k+1 = −Kfk,k
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Hence, we conclude (K−1)Rk−Klk = 0. Now the final propagation to difference
gives (K − 1)(Rk − Lk) = 0. The proof finishes routinely.

Example 27. Abel generalized the binomial formula on the limit a
h ,

b
h → ∞ as

(a+ b)
h
=

h∑
n=0

(
h

n

)
a(a− n)

n−1
(b+ n)

h−n

We must propagate the recurrence (K − c)ck = 0 of the powers ck to their three

substitution instances (a+ b)
h
, (a− n)

n−1
, and (b+ n)

h−n
. We will go through

the last instance in detail and just state the results of the first two easier ones:

H − a− b
A−B

}
(a+ b)

h
= 0 (AN − a+ n)(a− n)

n−1
= 0

For the substitution {c 7→ b+ n, k 7→ h− n}, we put together the defining rela-
tions (4) of the composite shifts B,N,H and the initial recurrence (K − c)ck = 0:

B − C NK − C H −K K − c

We must eliminate C and K, which is readily achieved by rewriting by B − C
and K − c. Since N is K−1C, we have Nc = (c+ 1)N . Hence we derive from
(c+ 1)N −B and H − c that the substitution transforms to

(b+ n+ 1)N −B
H − b− n

}
(b+ n)

h−n
= 0

Now consider a(a− n)
n−1

. Without the factor a, the interpretation of

(a− n)
n−1

for a = n = 0 is undefined, but with it we can define 0(0− 0)
0−1

=

00 = 1 so that it is compatible with the recurrence below. Let fa,n = (a− n)
n−1

and ga,n = a(a− n)
n−1

. Eliminating fa,n from {(AN − a+ n)fa,n = 0, afa,n =
ga,n} gives

(aAN − (a+ 1)(a− n))ga,n = 0

Next, let us consider the product a(a− n1)
n1−1 · (b+ n2)

h−n2 where we have
renamed the variables n apart. After introducing the compound shift N = N1N2,
we proceed to eliminate N1 and N2 from

aAN1 − (a+ 1)(a− n1)
(b+ n2 + 1)N2 −B

H − b− n2
N1N2 −N

The operator H − b − n2 is good as is and does not interfere with the rest of
the computation if H > b, n2 w.r.t. the monomial order. From (b+ n2 + 1)N2 −
B and N1N2 − N we derive BN1 − (b+ n2 + 1)N , whose superposition with
aAN1 − (a+ 1)(a− n) eliminates N1. We conclude

H − b− n
a(b+ n+ 1)AN − (a+ 1)(a− n)B

}
a(a− n)

n−1
(b+ n)

h−n
= 0
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Unlike before, in this example we do need to use the plurality of the recur-
rences of the binomial coefficient

(
h1

n1

)
. A Gröbner basis of its annihilators is

given by

(h1 + 1− n1)H1 − h1 − 1 (n1 + 1)N1 − h1 + n1 N1H1 −N1 − 1

To these we add recurrences of a(a− n2)
n2−1

(b+ n2)
h2−n2 and composite shifts:

H2−b−n2 a(b+ n2 + 1)AN2−(a+ 1)(a− n2)B N1N2−N H1H2−H

We must eliminate N1, N2, H1, H2. From the leftmost “H polynomials” and
H1H2−H we get (h1 + 1− n1)H − (h1 + 1)(b+ n2). Similarly, from the middle
“N polynomials”, we get a(b+n2+1)(n1+1)AN − (h1−n1)(a+1)(a−n2)B. Fi-
nally, from N1H1 −N1 − 1 and all the four polynomials on the second line, we
get a(H − b− n2 − 1)AN − (a+ 1)(a− n2)B. So

(h+ 1− n)H − (h+ 1)(b+ n)
a(b+ n+ 1)(n+ 1)AN − (h− n)(a+ 1)(a− n)B

a(H − b− n− 1)AN − (a+ 1)(a− n)B

(
h
n

)
a(a−n)

n−1
(b+n)

h−n
= 0

Next, to propagate to summation, we must eliminate n. The first operator
can be written −(H + h+ 1)n+(h+ 1)(H − b). The last operator can be written
((a+ 1)B − aAN)n+aAN(H − b)−a(a+ 1)B. Since H+h+1 and (a+ 1)B−
aAN commute, eliminating n yields at least

((a+ 1)B − aAN)(h+ 1)(H − b) + (H + h+ 1)(aAN(H − b)− a(a+ 1)B) =

= aANH(H − b)− a(a+ 1)BH + (a+ 1)B(h+ 1)(H − a− b) =

= (N − 1)aAH(H−b) + a(a+1)H(A−B) + (aAH+(a+1)B(h+1))(H − a− b)

Here N − 1 vanishes in propagation, and A − B and H − a − b are annihila-
tors of (a+ b)

h
, while irrelevant factors are shown in gray. We omit the excess

term computation because bounds are natural as for Vandermonde’s convolution
formula (Example 24).

So the leading monomial from one recurrence of the entire difference can be
chosen to be aAH2. This leaves as base cases the three specializations a = 0,
h = 0, and h = 1. The first case also takes care of the invertibility of a in
aAH2. The cases h = 0 and h = 1 can be easily symbolically evaluated. When
a = 0, we must detect that a(a− n)

n−1
= δ0,n (maybe by its recurrence),

which again makes the sum finite. Alternatively, we could treat a as a rational
expression indeterminate and hence make aA unconditionally invertible. Both
of these tricks are beyond the scope of our procedure.

7 Related Work

Holonomic sequences [28] are closely related to our work. Unlike our approach,
which allows infinitely many base cases as long as they are finitely representable
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(Sect. 5), they are limited to a finite number of base cases. Relaxing this limi-
tation yields approximately the homogeneous version of our propagation proce-
dure (i.e., without excess terms), whose theory Chyzak, Kauers, and Salvy laid
out [10]. Heterogeneity amounts to module Gröbner bases [8,14,20]. Its integra-
tion into propagations makes elementary identities about general sequences auto-
matically provable, which may be of interest for general-purpose theorem provers.

In practice, hypergeometric sums are common holonomic sequences that have
much faster algorithms available. Gosper’s indefinite summation [15] can be ap-
plied to compute Wilf–Zeilberger pairs [27], which offer compact proof certifi-
cates for definite sum identities. These fast methods admit generalizations to the
full holonomic setting. See Koutschan’s thesis [18] for an overview.

Holonomic functions have a nearly dual theory where differential equations
with polynomial coefficients play the role of recurrences. The above references
present the discrete and continuous holonomic theories together, sometimes uni-
fied and generalized by the language of Ore polynomials [6, 9]. We presented
only the discrete case because current higher-order provers lack the theoretical
groundwork needed to bootstrap usable differential algebra.

Finding a closed form instead of only checking it for a summation is a different
but related task. A common approach is to perform a recurrence solving phase
after recurrence computation, as in the Mathematica package Sigma [1,22].

8 Conclusion

We presented a procedure for proving equations involving summations within an
automatic higher-order theorem prover. The procedure is inspired by holonomic
sequences and partly generalizes them. It expresses the problem as recurrences
and systematically derives new recurrences from existing ones. In case of success,
it shows the induction step of a proof by induction, leaving the base cases to the
theorem prover.

As future work, we want to continue implementing the procedure in Zip-
perposition [25]. We hope that the subsequent practical experiments help us to
settle how side conditions of initial recurrences ought to be handled.
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